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1 Abstract

In this paper we consider the automatic prediction
of human interaction outcomes through the use of
paralinguistic features extracted from a noisy envi-
ronment. This capability carries two primary bene-
fits. First, it furthers technology which may improve
human-human and human-computer interaction. Sec-
ond, predicting interaction outcomes provides insight
into human relationships. This research specifically fo-
cuses on predicting whether or not participants in a
speed-dating situation will mutually elect to engage in
future interaction. Using audiovisual data from 283,
3-minute speed-dates from the Berlin Speed Dating
Study (BSDS), we extracted a set of 12,746 paralinguis-
tic features, which were subsequently reduced to 16 and
120 features through ad hoc and algorithmic methods
respectively. Multilayer perceptron (MLP) and sup-
port vector machine (SVM) models were trained on
each feature set and used to predict date outcomes.
Results from classification were poor, with neither clas-
sifier performing above the baseline. The MLP suffered
from issues resulting from unaccounted for class skew
and learned to classify each sample negatively. The
resulting misclassification error of approximately 11%
matches the class imbalance closely. The SVM, using
class weightings, was unable to accurately make predic-
tions based upon extracted paralinguistic features. A
Linear Kernel SVM achieved 30% misclassification er-
ror with an outlier class F1 Score of .24. These results
indicate that the extracted audio features contain lit-
tle useful information, likely due to the highly human-
noisy data collection environment and relatively un-
sophisticated methods of speaker diarization prepro-
cessing. Future research on the BSDS dataset will fo-
cus on improving audio feature extraction, gathering
a wide breadth of feature types, and using more ad-
vanced methods of feature development.

2 Introduction

Social signal processing (SSP) aims to provide com-
puters with the ability to sense and understand human
social signals [27]. This capability would allow com-
puters to automatically adapt to user behavior as well
as augment human-human interaction by informing in-
dividuals with extracted information. SSP consists of
four distinct tasks:

1. Collecting data

2. Detecting people in data

3. Extracting behavioral cues

4. Interpreting cues as social signals within specific
contexts

This process focuses on four primary domains from
which social signals arise:

1. Face and eyes

2. Vocal behavior

3. Gestures

4. Interaction geometry and synchrony

Applications of SSP are generally organized into the
following four areas:

1. Analyzing interacting humans

2. Coaching

3. Social robotics

4. Interaction with virtual agents

In this paper we focus on the first application area
- analyzing interacting humans - and specifically on
the subproblem of automatically predicting interaction
outcomes. This problem has been considered in a num-
ber of contexts, though of particular relevancy are in-
terview outcome prediction, negotiation outcome pre-
diction, and attraction prediction. These subject areas
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are convenient to study because they inherently pro-
vided labeled data (e.g., speed-date outcomes or job
interviewer impressions). In [24] the researchers used
vocal tone and prosody to distinguish between highly-
rated and poorly-rated candidates with 88% classifica-
tion accuracy. Four primary nonverbal features were
considered: (1) activity (2) engagement (3) emphasis
and (4) mirroring. Each measure was derived from
low-level audio descriptors and functionals. The re-
searchers used a bayesian network classifier to conclude
that activity and emphasis were good predictors of in-
terview outcome. The research was based on the rela-
tively small sample size (n=26), but nevertheless illus-
trates the efficacy of predicting outcomes based upon
automatic social signal analysis.

Prediction of negotiation outcomes is considered in
[18]. This research established the four signals used
in the job interview analysis as potentially meaningful
measures of interaction. The study, involving 38 partic-
ipants, considered mock workplace negotiations deal-
ing with workplace reassignment, salary, and health
care provided to the mock employee. The developed
classifier predicted negotiation outcomes with approxi-
mately the same accuracy as experts and indicated that
the significance of features differed greatly depending
upon which role displayed them. For example, in ne-
gotiations with positive outcomes for the lower-power
negotiator, engagement and stress were critical features
of the higher-power negotiator, while mirroring was a
critical attribute of the lower-power negotiator.

Automatic prediction of attraction is considered
within the convenient context of speed-dating, which
provides each daters desired interest. Researchers
in [15] performed early, automatic analysis of speed-
dating. Using the same four social signal features
as before, the experimenters analyzed 60, five-minute
speed dates. They predicted female interest at 72%
accuracy, with engagement being the strongest indica-
tor. Use of data from individuals in both testing and
training resulted in an increase of accuracy to 87.5%.
The researchers also attempted to predict responses to
followup questions using both linear and RBF kernel
SVMs with accuracy ranging from 62% to 82%.

In a later experiment by Ranganath et al., audio
from 1100 four-minute speed-dates was used in an anal-
ysis of interactional style [21]. The research focused
on both linguistic information, acquired through man-
ual transcription of audio conversations, and paralin-
guistic behavior, acquired automatically with the aid
of manual timestamps. The researcher’s primary par-

alinguistic focus was on prosody, but also considered
total speaking time and rate of speech. Backchannel
(e.g., ‘yeah’ or ‘uh huh’), appreciations (e.g., ‘nice’ or
‘cool’), and questions were shown to play the most vi-
tal roles. The researchers utilized a deep autoencoder
in order to circumvent issues introduced by the high-
dimensionality of lexical features, and in doing so re-
duced the 1000 most commonly used words to a set
of 30 high-level features. The researchers were able to
predict intended and perceived flirtation with accuracy
ranging from 69% to 79.5%, which was in all cases su-
perior to classification without the autoencoder as well
as to that of human classifiers.

The research discussed has considered audio fea-
tures and to a lesser extent dyadic features (e.g., turn
taking), but speed-dating research has additionally
been conducted that considers network features [19]
as well as interaction analysis based upon top-down
video [21]. To the best of the author’s knowledge, no
frontal-video speed-dating automatic analysis has been
performed at large scale.

Presented research analyzes speed-dating interac-
tion using exclusively paralinguistic features. Real-
istically, the contributions of this research are so far
minimal; however, it does considered two interesting
problems, draw valuable conclusions about paralin-
guistic features, and establish a basis from which fu-
ture related research may grow. Two notable prob-
lems this paper considers are (1) how to best per-
form automatic speaker diarization in audio extracted
from human-noisy environments with exactly two non-
collocated microphones and (2) how to best predict
skewed-class interaction outcomes based upon sparse
interaction patterns. The valuable conclusions this pa-
per draws with respect to BSDS-specific research are
(1) that paralinguistic features extracted through cur-
rent means from the noisy environment of BSDS data
are unlikely to provide sufficient information if any
at all and (2) any method of interaction classification
applied to BSDS data must be highly robust against
noise. The remainder of this paper is organized as
follows: (1) BSDS dataset (2) feature definitions (3)
feature extraction (4) feature selection (5) classifica-
tion models and techniques (6) results and baselines
(7) discussion and (8) conclusion and future work.
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3 Dataset

The Berlin Speed Dating Study (BSDS) dataset, de-
scribed in detail in [2], was collected at Humboldt Uni-
versity, Germany during a five-month period in which
17 speed-dating sessions were held. 190 men and 192
women aged 18–54 years (mean=32.8, SD= 7.4) par-
ticipated in the study, with each session involving 17-
27 participants. Before each session, all participants
had audio and visual samples taken in addition to fill-
ing out a pre-event survey, which collected primarily
demographic information (e.g., age, level of education,
income) in addition to other personal information (e.g.,
openness to experience, extraversion, shyness). Dates
were carried out in booths containing two chairs, with
a microphone positioned next to each participant and
a video camera positioned across from each participant
at an angle. During the event, male participants moved
between booths to participate in a 3-minute speed date
with each female participant. After each date, both
participants recorded their interest in future dates. At
the end of the event, participants were allowed to re-
consider their choices. Two follow-up surveys were
conducted, one 6 months after the event and one 12
months after. Both collected information about inter-
actions resulting from the speed-dating event.

The BSDS data is unusual not only in it’s breadth
and depth of information collected about participants,
but also in it’s sample size. To the best of the author’s
knowledge, the BSDS is the largest speed-dating event
with at least audio data, containing 2160 speed-dates.
Unlike the studies addressed in the related works sec-
tion, the BSDS collected frontal video of participants.
A large subset of these videos were analyzed by an
unrelated group of non-german-speaking participants,
providing a human baseline for date-outcome predic-
tion [20].

The BSDS data differs from the SpeedDate Cor-
pus used in [21] in that successful speed-dates occurred
with much less frequency. Approximately 11% of the
BSDS dates resulted in mutual interest, which trans-
lates into significantly imbalanced outcome classes. For
long-term prediction this percentage falls even further
to 6%. In contrast, the SpeedDate corpus likely had a
much higher positive outcome ratio. 56.3% of men and
37.4% of women responded affirmatively in the Speed-
Date Corpus, while in the BSDS, 36.8% of men and
32.4% of women responded affirmatively [19]. This dis-
crepancy could be a result of a number of factors, for
example the differing average age of subjects or the

environment of the study.

4 Feature Descriptions

The INTERSPEECH 2013 Computational Paralin-
guistic Challenge feature set was used as the full size
feautre set[23]. The set includes energy, spectral, cep-
stral, voicing, harmonic-to-noise, spectral harmonicity,
and psychoacoustic spectral sharpness related features.
In total it contains 6,373 features, which are primarily
functionals (e.g., mean, std dev) applied to low level
descriptors (LLDs) and their derivatives. LLDs are de-
fined as values extracted directly from “raw” data and
generally reflect information computed on “chunks”, or
temporally-defined subsets, of data [22].

Audio LLDs are generally categorized into
prosodic, voice quality, and spectral features. Prosodic
features encompass fundamental frequency (F0),
speech energy, duration and other qualities, and de-
scribe the manner in which a person talks. F0 is the
lowest frequency present in a waveform and in speech
reflects the vibration of vocal cords. F0 plays a critical
role in the manner in which people perceive the pitch of
speech [8]. Speech energy refers literally to the amount
of energy carried by a wave and is reflected in its ampli-
tude. Energy is used for a number of speech analysis
tasks, but is particularly common within speech seg-
mentation [13]. Voice quality measures deviations of
speech from the underlying wave signal. Major fea-
tures include jitter, shimmer, and harmonics to noise
ratio (HNR). Jitter reflects F0 variation over wave pe-
riod while shimmer reflects wave amplitude variation
[10]. HNR refers to the portion of an audio signal con-
tributing to the underlying periodic wave. Signal spec-
trum refers to the distribution of signal energy as a
function of frequency. Common features include Mel-
frequency cepstrum (MFC) and corresponding coeffi-
cients (MFCC).

5 Feature Extraction

In order to derive meaningful information from the
BSDS audio data, the conversational turns were ex-
tracted so that features could be computed for only
one interlocutor. This task, refered to as speaker di-
arization, consists of two subtasks: (1) speech recogni-
tion (segmenting audio files into speech and nonspeech
segments) and (2) speaker recognition (ascribing the
resulting speech segments to specific speakers) [25].
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Speech segmentation is traditionally performed using
energy and spectrum based methods, though many
approaches exist. Speaker recognition is performed
on speech chunks using a variety of methods, with
the most common approach being maximum likelihood
classification with Gaussian Mixture Models (GMM).
Speaker diarization research has traditionally revolved
around audio from two domains: (1) broadcast news
[5] and (2) telephone conversation [14]. More recently,
speaker diarization of group meetings has become pop-
ular, specifically methods that utilize multiple audio
inputs in tandem [1].

A variety of openly available software exists for
the purpose of performing speaker diarization. For ex-
ample, the LIUM speaker diarization toolkit includes
a means of performing speaker diarization on broad-
cast news data [16]. Other tools include the SHoUT
Toolkit, ALIZE, and DiarTK, which focus on conver-
sational analysis [26][25].

In processing the BSDS data, however, these toolk-
its were either unable to accurately extract and classify
speech segments, unavailable for download, or seem-
ingly inoperable. This first issue is potentially due to
four factors. First, the BSDS data contains significant
background conversation that frequently becomes as
loud or louder than the conversation of interest. Sec-
ond, microphones capturing data during the speed-date
each individually captured one interlocutor with much
higher intensity than the other due to their proximity
to individual participants. Third, the BSDS data may
contain greater amounts of and more rapid speech over-
lap than anticipated by these systems. And Fourth,
these systems, which were generally trained and ap-
plied to english conversation, don’t work as well on
conversation in German. The unequal sound intensity
and presence of two microphones allowed for rough ap-
proximations of speech segments. This was done by
extracting speech energy from the sound files using
openSMILE [9] and then subtracting one audio file’s
loudness from the other. The resulting positive val-
ues above a certain threshold were then ascribed to
one speaker and the negative values below a certain
threshold ascribed to the other speaker. This thresh-
old was set in a variety of ways, but ultimately a con-
stant number of standard deviations from the mean
loudness value was used. The results from this method
of speaker diarization can be improved upon greatly,
but, given time limitations, this approach provided a
reasonable option

Once speaker diarization was complete and each

date had two corresponding audio files segmented by
speaker, feature extraction was performed using the
openSMILE toolkit [9]. This produced 12,746 features
for each speed-date, with half corresponding to each
gender. These were combined with the target value -
the outcome of the speed-date - to complete the sample.
A similar approach was taken in [29] in order to per-
form the fusion task. This approach is classified under
feature-level fusion, which is the aggregation of infor-
mation prior to system training and classification [3].
The alternative to feature-level fusion is decision-level
fusion. In this case, rather than combining features
from both daters and predicting the overall outcome,
decision-level fusion predicts each daters decision indi-
vidually, and determines the final outcome based upon
that information. Decision-level fusion is likely supe-
rior to feature-level fusion in the case of speed-dating
since it mitigates imbalanced class issues, and will be
used in the future.

6 Feature Selection

Feature selection is the process of selecting a subset
of features for use in classification, thereby reducing
the dimensionality of the feature set. Three primary
approaches exist for reducing the dimensionality of
the feature set or discovering low-dimensionality, high-
abstraction feature sets: (1) ad hoc feature selection (2)
automatic feature selection and (3) feature learning.
Due to the relatively high dimensionality of the fea-
ture set, any classifier trained using the original 12746
features would likely suffer from the high dimension-
ality/small training set problem. Reduction of dimen-
sionality was therefore desirable since it diminished the
likelihood of overfitting as well as reduced model train-
ing time.

Ad hoc feature selection is the selection of features
based upon researcher domain knowledge. This ap-
proach provides a convenient manner for dimension-
ality reduction though suffers from the need for ex-
perience, thereby hindering generalization of machine
learning methods. A small subset of features (table 1)
were selected based upon the results of other speed-
dating and interaction studies [21] [29].

The second approach to dimensionality reduction
is the algorithmic selection of features. Principal Com-
ponent Analysis (PCA) is a commonly used method
for selecting subsets of features which account for the
largest amount of variability in the original data. PCA
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Table 1: Ad Hoc Paralinguistic Feature Weightings

f F0 maxPos -0.0269

f F0 stddev -0.0071

f F0 minPos 0.0455

f RMSenergy peakRangeAbs 0.0953

f logHNR amean -0.1994

f voicing maxPos -0.1182

f mfcc amean -0.6102

f mfcc flatness -0.8758

m F0 stddev -0.4524

m F0 minPos -0.0693

m RMSenergy maxPos -0.0016

m RMSenergy minRangeRel -0.0683

m logHNR amean -0.0291

m voicing maxPos 0.1049

m mfcc one amean 0.7877

m mfcc one flatness 0.6176

Ad Hoc features are shown above. The Male and Female MFCC (in blue) are both weighted heavily, with female values
being negative.

was used to reduce the dimension of the samples to
120 features. This is a large dimensionality reduction,
reflecting two orders of magnitude fewer features, but
was chosen because it empirically resulted in individ-
ual features capturing significant portions of the data
variation.

The third method for feature space reduction is
feature learning. Feature learning, or representation
learning, is a general technique referring to the act
of finding data representations which exhibit certain
“good” properties. These properties are covered in de-
tail in [6], but informally, “good” properties are those
that assist in the discovery and disentanglement of the
causes of variation in a dataset.

7 Classification

Two models were used for classification - a multi-
layer perceptron (MLP) and a support vector machine
(SVM). The MLP was implemented in Theano, a math-
ematical expression library [7] and consisted of three
layers. SVMs with both linear and radial basis function
(RBF) kernels were used in classification. Of the 2160
speed-dates, 283 were used in this classification task.
This choice of smaller sample size was motivated by
processing and quality-related factors. Each video was
subdivided into 30 second segments, resulting in 1700
data points originating from 6 different speed-date ses-

sions. Due to processing issues, there is an unknown
distribution of samples containing each participant in
each of the train, test, and cross validation sets. This
is obviously not desirable and will be changed in future
research.

Prior to classification, feature values were standard-
ized to zero mean, unit variance due to the negative
impact unscaled features have on the effectiveness of
SVMs [11]. For MLP classification, a 60%-20%-20%
split was used for train, cross validation, and testing
data. We used stratified 5-Fold cross validation for
testing the SVM models. Stratified K-Fold was used in
order to prevent exasperation of issues introduced by
class imbalance.

In order to assess classifier accuracy, classification
error as well as precision and recall are reported. Pre-
cision refers to the ratio of items correctly labeled as a
certain class to total items labeled as that class. Recall
refers to the ratio of the number of samples of a class
correctly classified to the total instances of that class.
These measures are not susceptible to imbalanced class
issue because they provide class-specific, rather than
population-wide, measurements.

8 Results

Classification results are listed in table 2 along with
two baseline estimates. The first baseline is that of
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Table 2: Classifier Results: Paralinguistic Features

Classifier or Baseline Overall Accuracy Precision Recall F1 Score

Human Baseline 38.40% - - -

Negative Baseline 88.70% 0 0 0

MLP (all paralinguistic features) 87.95% - - -

MLP (pca to 120 paralinguistic features) 88.53% - - -

MLP (ad hoc paralinguistic features) 87.95% - - -

Linear SVM (all paralinguistic features) 88.96% 0.26 0.17 0.2

Linear SVM (pca to 120 paralinguistic features) 69.48% 0.17 0.46 0.24

Linear SVM (ad hoc paralinguistic features) 57.04% 0.1 0.49 0.17

RBF SVM (ad hoc paralinguistic features) 86.15% 0.21 0.17 0.19

Negative baseline represents predicting no for each date. Note that many overall accuracy values are similar to this
baseline, indicating they may be performing the same function.

always predicting negative date outcomes. Since only
11% of dates had positive outcomes, this method re-
sults in 89% classification accuracy. The second base-
line comes from human classifiers [20]. Human classi-
fiers range from 55% to 65%accuracy depending upon
which chronological section of the interaction they ob-
serve. This baseline reflects human ability to predict,
based on both audio and visual information, roman-
tic interest of individual daters. Unfortunately, the
paralinguistic features collected reflect date outcomes
rather than individual interest, and for this reason this
baseline cannot be used in its original form. If we as-
sume that each date is equally likely to be predicted,
squaring the original value provides an approximate
human baseline. Precision, recall, and F1 score for the
human baseline are not available. Human raters did
not perform their ranking on all the videos used in this
research, so in using this baseline we make the assump-
tion that it applies to speed-dates in general.

9 Discussion

The tendency of the MLP to approach training classifi-
cation error of 11.3% indicates that it may be learning
to negatively classify all examples. Since the classes are
heavily imbalanced, the cost of misclassifying all of one
type is overcome by the benefit of correctly classifying
all of the other type. It is also possible that the MLP
performs in this manner because of the feature data.
In general, paralinguistic features possess predictive in-
formation [18], but poor quality speaker segmentation
may render them useless.

Results from the SVM support the claim that the
data does not contain sufficient information for accu-

rate classification. Using a RBF kernel, the SVM, re-
gardless of class weight or parameter selection, clas-
sifies all samples either negatively or positively when
all 12,000 or the reduced 120 features are used. With
ad hoc features the RBF kernel SVM was able to dis-
tinguish some positive and negative samples, though
it still did not perform well, having an outlier class
F1 score of .19. This indicates that the classifier lacks
the necessary information to correctly predict date out-
comes. The linear kernel SVM performed similarly to
the RBF Kernel, though did achieve a higher outlier
class F1 score of .24 when trained using the 120 reduced
features. These results may indicate that the data does
contain some useful level of information, though it may
also reflect the weighting applied to the outlier class.

The linear kernel SVM ad hoc feature weightings
are reported in table 1. The highest weight was applied
to the first MFCC coefficient mean and flatness values
(positive for male, negative for female). Flatness is
generally used to measure the degree to which a signal
reflects either tone or noise and in this case an inverse
relationship exists between the male and female ver-
sions of these values. It’s possible this relationship is a
meaningless reflection of the poor data quality, a possi-
bility made more likely by MFCC’s general susceptibil-
ity to signal noise. Assuming the feature data contains
useful information, however, these results may indicate
that a positive relationship exists between time spent
talking by males and interaction outcomes. This is in-
fered from MFCC’s role in reflecting the prescence of
speech [28] (of course, only the first MFCC coefficient
was used, which detracts from this claim). This con-
clusion is not supported by related studies, for example
[12], which showed that increased time spent speaking
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by males translated into a lower likelihood of romantic
or friendly interest.

10 Conclusion

The presented research illustrates that paralinguistic
features extracted using rudimentary speaker diariza-
tion methods from high-human-noise environments do
not provide a basis for consistent interaction classifica-
tion. More accurate methods of speech segmentation
and paralinguistic information extraction may improve
classification, but even with these refinements, multi-
modal analysis (i.e., incorporation of visual, network,
demographic and other features) will provide otherwise
unattainable improvements in classification accuracy.

Even such a system would, however, still be reliant
upon essentially ad hoc features, whether researcher or
algorithmically-defined. Feature selection in this man-
ner is undesirable not only because it requires domain-
specific expertise, but also because it limits the clas-
sification system to human-defined abstractions. This
limitation is particularly costly in recognizing patterns
in human-interaction because of the low likelihood that
any combination of human-defined abstractions would
be capable of accurately accounting for the wide variety
of rarely occurring, yet important information present
in an interaction. For this reason, a method of apply-
ing representation learning to raw audiovisual data in
order to define high-level features of human-human in-
teraction is highly desirable. Whether such a method
is feasible is a difficult assessment to make, but its de-
velopment would almost certainly revolutionize inter-
action classification.

11 Appendix A: Outcome and Net-
work Features

11.1 Outcome Features

Outcome features are derived from information pro-
vided after the speed-date by the participants. In
the BSDS response sheet, participants provided three
pieces of information: (1) their initial choice concern-
ing the date (2) their final choice (participant’s could
change their decision from their initial choice) and (3)
the choice they predicted the other participant, their
date, would make. Based upon this information, three
features were developed: (1) awareness (2) confidence
and (3) decisiveness. Awareness is the fraction of cor-

rect predictions by the participant. Confidence is the
fraction of affirmative predictions (i.e., predictions that
the other person would request to meet again). Deci-
siveness is the fraction of decisions in which the par-
ticipant changed his/her mind between initial choice
and final choice. The assumption is that these fea-
tures could also be derived from other sources (e.g.,
self-reporting) and could therefore be useful in prac-
tice.

A fourth feature called selectivity was initially de-
fined which reflected the fraction of dates to which a
person chose negatively. This factor was removed since
it seemed to “unfairly” reflect the target value. Re-
moving this feature ultimately made little difference in
accuracy predictions ( 1.5% increased error without it).

11.2 Network Features

Network features are derived from information con-
tained within the network of relationships existing in
the speed dating event. While these features do not
necessarily exclude information about the specific in-
dividual being considered, the features considered here
do. As a result, these features make inferences about a
specifc date without using any information from that
date. For these features, I simply replicated the ap-
proach taken by [19], though left out components they
stated had minimal impact. Three components make
up each feature: (1) a weight representing the similar-
ity between an individual and a member of the same
gender (2) a value derived from the relationship be-
tween that member of the same gender and the mem-
ber of the opposite gender involved in the current date
and (3) a method of aggregating all combinations of
(1) & (2).

1. Weights were defined in two ways. The first
was a weight dependent on the number of peo-
ple liked in common by you and another member
of your gender. The second was a weight de-
pendent on the number of people that like both
you and the other member of your gender. These
weights were developed by taking the projection
of the bipartite graph on either the male or fe-
male node sets and representing the weights on
the new edges with either of these two types of
weights (see figure 1 and 2).

2. The value that was multiplied by the weight was
defined as +1 if an edge existed between the the
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date and the other person of the same gender and
-1 if no edge existed.

3. Two methods of aggregation were used by [19]:
(1) the max of all weight*value combinations and
(2) the sum of these values. They found sum to
be more predictive and so I elected to only use
that method.

They also defined two other features (1) ‘num that
like you’ and (2) ‘she likes you’, which I did not include.

11.3 Results

Note that for these features, I attempt to predict the
response of only one individual rather than both (be-
fore I was trying to predict date outcomes. Here I only
predict the choices of individuals). This approach re-
sults in more balanced classes and arguably allows for
more easily interpreted results. It also results in dif-
ferent feature weightings for each gender. Each sample
had a total of 10 features. There were 2160 samples
for each gender. More samples were used in this por-
tion than for the paralinguistic features because I have
available all the information required for outcome and
network samples.

The classification was performed using stratified
10-fold cross validation and since there is much less
class imbalance in this case, the precision, recall, and
F1 score are reported as averages over both positive
and negative target values (classes). Unless otherwise
noted, the best SVM classification uses an RBF kernel.

For predicting male choices, the best classifier used
both outcome and network features, while for predict-
ing females, the best predictor used exclusively net-
work features. Male choices (72.4%) were significantly
harder than female choices (83.5%) to predict. This
trend aligns with the relative difficulty in predicting

male and female choices based on conversational fea-
tures [21]. Interestingly, predicting a males choice is
more difficult than predicting a males prediction.

These classification results indicate that a male’s
similarity with his peers is less informative than a fe-
male’s similarity with her peers (by either measure of
liking the same people or being liked by them). The
ability to predict female choices with 83.5% accuracy
using only four network features is somewhat surprising
and confirms that network features are worth pursuing.

The custom outcome features proved not to be very
effective. One notable outcome feature result is that
the most heavily weighted outcome feature for predict-
ing female outcomes was female awareness (fraction of
correct predictions), with a large negative weighting.
This indicates that the worse a female individual is at
predicting the male’s response, the more likely she is
to choose to go on another date. The highest weighted
feature in predicting male choice was male confidence
(fraction of times he predicted the female selected to
go on another date). This indicates a male’s decision
is more heavily impacted by what he believes the fe-
male’s decision will be than is the female’s decision is
by the male’s - no surprise there.

Network features are a promising avenue for pre-
dicting outcomes. One highly desirable statistic given
a speed-dating network would be the two individuals
best suited for each other by certain metrics. It seems
plausible this information can be predicted based upon
network features, and I intend to investigate it next.

12 Appendix B: Data Pipeline

Data was transferred from storage in Dropbox to AWS
EC2 instances. Movie files were converted to audio
using FFmpeg and this audio was converted to a for-
mat usable by openSMILE by SoX (Sound eXchange).

Table 3: Classifier Results: Network & Outcome Features

Classifier Overall Accuracy Precision Recall F1 Score

SVM (female, network) 83.50% 0.82 0.77 0.79

SVM (female, outcome) 68.60% 0.51 0.41 0.45

SVM (female, network + outcome) 83.01% 0.81 0.80 0.80

SVM (male, network) 61.85% 0.44 0.29 0.35

SVM (male, outcome) 56.90% 0.43 0.47 0.45

SVM (male, network + outcome) 72.40% 0.70 0.76 0.72

Female choice prediction is performed more accurately with network features than male choice prediction. SVM (male,
network) has an unusually low yet correct recall value.
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Figure 1: Directed, Bipartite Graph

Figure 2: Corresponding Undirected, Weighted Projection

OpenSMILE was used initially to extract speech energy
from each pair of audio files from each date. Speaker
diarization was performed using speech energy values
in python. Segmented files were then passed back to
openSMILE in order to extract audio features. Ex-
tracted features were then passed to theano for MLP
classification and scikit-learn for SVM classification.

Converting the 40GB of video data into a single
file containing data samples (features and correspond-
ing target value) required about 60 hours of processing
time. Profiling the code showed that most of that time
was spent running openSMILE and FFmpeg or in file
input/output. The actual data samples file ultimately
reflected only a fraction of the dates due to a variety

9



Figure 3: Data Process Flow

of issues and mistakes on my part.

13 Appendix C: Future Work

Areas of future work include improving audio feature
extraction, extraction of visual and dyadic features,
proportional weighting of data samples, and represen-
tation learning.

13.1 Improving Audio Extraction

The speaker diarization systems mentioned in the pa-
per are the best option for improving sound extrac-
tion. I plan to take another look at DiarTk. It will re-
quire training a speaker recognition model. I thought
this would require too much time during the semester,
though in hindsight not trying it may have been more
costly. Either way I’m looking forward to trying it out.

13.2 Visual Features

Visual feature analysis would entail analyzing the date
videos in to order to extract visual features. This prob-
lem consists of first detecting people in images and
then extracting features. Visual analysis is generally
grouped into face & eyes and positioning & gestures. I
intend to focus initially on face & eyes. Facial features

include (1) facial action units (2) positioning (3) direc-
tion and (4) mouth openness. Features related to eyes
include (1) gaze direction (2) motion and (3) openness.
There are a number of approaches to extracting these
features as well as many tools. I intend to use OpenCV.

13.3 Dyadic Features

Dyadic features describe the interaction of two individ-
uals. For example, [29] utilized dyadic features such as
mutual/nonmutual lean forward or smiling in an at-
tempt to predict friendship. These features can be au-
tomatically extracted in certain cases provided neces-
sary low level features are available. I’ll extract dyadic
features once I’ve completed visual features.

13.4 Proportional Weighting of Data Sam-
ples

Machine learning systems are often evaluated on their
ability to generalize to data they have not encountered.
Emphasizing this metric generally translates into train-
ing classifiers on data from individuals who do not also
appear in testing data. It may be desirable, however,
to develop a system capable of adaptation to patterns
exhibited by a single individual in situations where that
individual may be frequently reusing a system, for ex-
ample SSP. One way to adapt a system in this way is
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to use that person’s data in training and to weight that
data so as to emphasize it’s significance to the model.
This approach can also be used on data that is, by
some chosen metric, similar to the user data (as seen
in the network section).

13.5 Representation Learning

Representation learning consists of a set of method for
creating low-dimensional, high-level features from low-
level data that accurately reflect variation. This in-
cludes, but is not limited to, deep learning methods. A
couple of the papers referenced in this report used rep-
resentation learning and saw significant classification
improvement. Making interaction outcome prediction
amenable to representation learning may not be possi-
ble given current capabilities (it’s almost certainly not
in the broad sense), but it is nevertheless an interesting
prospect and something I intend to pursue.
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