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Abstract—We analyze the task of learning to play the Atari 2600
game Montezuma’s Revenge with an emphasis on the application
of hierarchical reinforcement learning methods. This game is
particularly challenging due to its sparse reward structure, partial
observability, and hierarchy of diverse subtasks. We discuss
potential solutions to these first two challenges, and, for the third,
propose a simple method - stacking multiple recurrent neural
network layers - that we conjecture enables the use of temporal
abstraction in deep reinforcement learning models. We evaluate
variations of this method on a set of test problems, and present
promising results for one model-free, value-based variation that
explicitly encodes temporal abstraction in the model.

I. INTRODUCTION

Learning to play Atari 2600 games directly from screen
input is a challenging reinforcement learning task. Methods for
overcoming challenges presented by this task are well suited
for application to real-world problems with high-dimensional
state spaces. Real-world problems also frequently exhibit other
challenges that are not present in many Atari games - for
example, sparse rewards, partial observability, and hierarchical
structure. Montezuma’s Revenge is one game, however, that
exemplifies these challenges. For this reason, this game is an
appealing testing ground for reinforcement learning methods
intended for complex, real-world application.

Deep reinforcement learning is a class of methods well-
suited to application in high dimensional state spaces that has
seen significant recent interest. A number of such methods
have been proposed to address the three challenges presented
by Montezuma’s Revenge, but none, at least independently,
seem sufficient to tackle this problem. In this paper, we briefly
survey potential solutions to the first two problems - sparse
rewards and partial observability - and propose a novel method
of alleviating the third challenge through the incorporation of
temporal abstraction.

A number of traditional hierarchical reinforcement learning
methods exist, both in which abstract actions are provided
manually (e.g., options [28], HAMQ [20], and MAXQ [6])
or automatically learned (e.g., HEXQ [9] and skill chaining
[11]). While it is plausible that these latter methods may be
adapted to problems such as Montezuma’s Revenge, this has
not yet been accomplished. Recent success in playing these
games is largely due to advances in neural networks, to which
no existing hierarchical methods seem immediately applicable.
How can neural networks automatically learn increasingly
complex skills? Central to learning skills is the ability to utilize
state and temporal abstraction - i.e., the ability to only use the

subset of available information that is relevant to a specific
subproblem rather than the entirety of available information.

We present a method that we conjecture is capable of such
temporal and spatial abstraction. Specifically, we propose the
simple extension to Recurrent Q-Networks (RQNs) of adding
additional recurrent layers, which we call stacked RQNs
(sRQN). We demonstrate the effectiveness of this method on
a set of test hierarchical learning tasks.

The rest of this paper is organized as follows:
1) Discussion of Montezuma’s Revenge
2) Related Work
3) Background Topics
4) Stacked Recurrent Q-Networks
5) Experiments and Results
6) Discussion
7) Conclusion

II. MONTEZUMA’S REVENGE

In Montezumas Revenge, the player controls an explorer
with the goal of escaping from a maze while gathering as
much loot as possible (see figures 1 and 2).

A. Challenges
This game is difficult for three reasons. First, it exhibits

sparse rewards. For example, in the starting room of the maze,
the explorer must perform a long sequence of complex actions
to reach the key and receive any reward signal.

Second, Montezumas Revenge is partially observable when
using a fixed number of frames to represent the state. This is
because it is possible for the agent to (1) collect a key, (2) use
that key to open a door, which removes it from the inventory,
and (3) enter into a separate room of the maze. At this point the
agent does not know whether it has previously opened a door
and is unable to infer this information from the screen (see
Appendix A for example sequence). As a result, an optimal
solution must overcome partial observability.

Third, Montezumas Revenge consists of a hierarchy of
diverse subtasks, each of which must be mastered to play the
game successfully. For example, on the timescale of a few
frames, the agent must learn to avoid attackers or climb up and
down ladders. On the timescale of a few hundred frames, the
agent must learn to navigate through a diverse set of individual
rooms. On the timescale of thousands of frames, the agent must
plan trajectories through the maze that will allow it to access
new rooms and ultimately escape. Accomplishing these tasks
seems to require some form of temporal abstraction.
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Fig. 1: The first room of the first-level maze in Montezuma’s Revenge. The explorer, shown at
center image in red, must retrieve the yellow key to open either of the two doors.

Fig. 2: The full maze of the first level of Montezuma’s Revenge. The explorer must navigate from
the top room in purple to the bottom-left room in dark green.

III. RELATED WORK

A. Playing Atari 2600 Games
Development of a general video game playing agent specif-

ically for the Atari 2600 was introduced in 2006 by Naddaf
[18]. Bellemare et al. [2] formally introduced the Arcade
Learning Environment framework and established a set of
baselines using SARSA(λ) applied to tile-coded features as
well as search-based methods that explore the game through
saving and reloading its RAM contents. Offline, planning-
based methods relying on this ability have achieved excellent
results in playing Atari games [7]; however, the focus in
this project is on methods that use information available
to human players and that can execute in real-time. Within
these constraints, Defazio et al. [5] compared the performance
of SARSA(λ), Q(λ), next-step and per-time-step maximiz-
ing agents, Actor-Critic methods, and others for Atari game
playing, finding that the best performing algorithm differed
significantly between games. Minh et al. [17][16] introduced
Deep Q-Networks (DQN), a batch Q-learning method that uses
a neural network to learn state-action values.

B. Exploration
There are three recent extensions of the DQN that may

provide solutions to the problem of exploration in sparse
reward environments.

First, Stadie et al. [27] incorporated an autoencoder to learn
state representations that were used in conjunction with a
separate, learned model to incentivize exploration. This method
resembles earlier work in intrinsic motivation [3] and artificial
curiosity [24].

Second, Osband et al. introduced the Bootstrapped DQN
[19], which samples randomly from a distribution over Q-
value functions. This is accomplished by extending a DQN
with a set of heads, one of which is chosen per episode to act
greedily, thereby allowing for deep exploration as opposed to
dithering strategies such as ε-greedy. This method as well as
predictive models may be paired with Prioritized Experience
Replay [22] to further decrease sample complexity in reward-
sparse environments.

Third, Minh et al. [15] recently proposed a set of asyn-
chronous deep reinforcement learning methods, one of which
- Asynchronous Advantage Actor Critic (A3C) - is the current
state-of-the-art in real-time Atari game playing. In this method,
agents across multiple CPU threads asynchronously update
shared weights. This approach significantly speeds learning
(one day of training on a CPU achieves superior results to
eight days of training a DQN on a GPU), as well as provides
a number of natural extensions for improved exploration.

C. Partial Observability
Two approaches provide avenues for overcoming challenges

presented by partial observability in Atari Games.
First, the Deep Recurrent Q-Network (DRQN or RQN)

proposed by Hausknecht [8] adds a long short-term memory
(LSTM) layer to the network. The RQN deals well with partial
observability in the form of flickering game screens, but has
not been tested on tasks involving partial observability over
longer timescales.

Second, Schmidhuber proposed a method in which a RNN
model learns the dynamics of the environment, and then shares
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connections with a controller [23]. Since the model hidden
state must in theory capture all information of the input nec-
essary for predicting future states and rewards, the controller
should be able to treat the hidden state as a Markovian input
for solving the underlying MDP. This in theory addresses the
issue of partial observability, but also, as asserted in the paper,
provides a mechanism for performing hierarchical learning.
Related approaches have been applied, for example, in [14].

D. Stacked Recurrent Neural Networks
The method we propose for enabling temporal abstraction

in deep reinforcement learning relies upon stacks of recurrent
layers. This is one method of making RNNs deep, in which the
outputs of lower layers are input to higher layers. [21][25]. The
claimed benefit of this approach is that it captures patterns at
differing timescales. While this assertion is not obviously true,
there are a number of extensions to stacked RNNs, for example
Gated Feedback Recurrent Networks [4] and Clockwork RNNs
[12], which more explicitly learn to process input at different
timescales.

One method that is particularly explicit in performing tem-
poral abstraction is exemplified by the Hierarchical Neural
Autoencoder [13], which passes the output of lower RNN
layers to higher layers only at fixed intervals. This method
can be viewed as a recursive network [26] altered to include
recurrent connections at each layer.

IV. BACKGROUND

A. Reinforcement Learning
We consider the standard reinforcement learning setting in

which an agent interacts with an environment, taking action a
in state s and receiving reward r and next state s′. The goal
of the agent is to maximize the expected discounted return for
each state s. This value for a given policy π is given by the
state-action value Qπ(s, a) = E[Rt|st = s, a]. The optimal
state-action value Q∗(s, a) = maxπQ

π(s, a) gives the best
possible value achievable by any policy. The value of following
a policy π starting at a state s is defined V π = E[Rt|st = s],
with equivalent optimal version as before.

B. Q-Learning
Q-learning is a model-free, value-based method that itera-

tively improves an estimate of the optimal state-action value
function. It does this by minimizing the expected squared error
between a bootstrapped estimate of the value of the next state
plus reward and an estimate of the value of the current state:
minθE[(rt + γmaxa′Q(s′, a′; θt−1)−Q(s, a; θt))

2].

C. Deep Q-Networks
Deep Q-Networks use neural networks to approximate the

state-action value function. They do this in the discrete action
case by using a network architecture that maps an input state
representation to a series of outputs, each of which correspond
to the estimated Q-value of taking a specific action in the
current state.

Two techniques are generally used with DQNs to stabilize
learning. The first is the use of a replay memory, which
samples batches of previous experience from a collected
dataset D to update network parameters. This speeds learning
by reducing correlations between input samples. The second
method is the use of a target network, in which a separate
set of network parameters θ− are maintained and used to
produce target values in the Q-learning update. This eliminates
a feedback effect where a parameter update can result in
increasingly large updates producing divergent behavior.

DQNs thus minimize a similar object to that of Q-learning:
minθE(s,a,r,s′)∼D[(rt + γmaxa′Q(s′, a′; θ−)−Q(s, a; θ))2]

D. Recurrent Q-Networks
Recurrent Q-Networks (RQN) have a similar structure to

DQNs but include a recurrent layer somewhere in the archi-
tecture, generally as the second to last layer of the network.
This allows the model to in theory remember information from
all previous states. Most related work and all recurrent models
in this paper use Long short-term memory (LSTM) RNNs [10].

V. STACKED RECURRENT Q-NETWORKS

We propose to incorporate the temporal abstraction capabil-
ities of stacked RNNs into the RQN. We conjecture that this
model, the stacked Recurrent Q-Network (sRQN), will be able
to capture patterns at different timescales, thereby enabling it to
learn to perform tasks at different level of temporal abstraction.
In Montezuma’s Revenge, for example, the lowest layer of the
network might learn to avoid obstacles and climb ladders, the
layer above to navigate individual rooms, and a higher layer
still to learn to escape a maze as a whole.

A. Layer Connectivity
Which layers should connect with the final, state-action

value producing layer? We consider two options - one in which
the final output of all recurrent layers is input into the final
feed-forward layer (sRQN-merge), and a second in which only
the output of the final recurrent layer is input to the feed-
forward layer (sRQN).

How should the different layers be connected across
timesteps? While it is possible to connect earlier timesteps
of higher layers back to lower layers, we only consider here
the relatively simpler options of full connectivity and partial
connectivity across timesteps. In this latter option, lower-
layer outputs are input to higher layers only at fixed intervals
similarly to the hierarchical neural autoencoder [13]. See figure
3 for depictions of the different architectures.

We refer to this partially connected network as a hierar-
chical stacked recurrent Q-Network (hsRQN). There are two
motivations for this architecture. First, it is more efficient that
the fully connected version. This is a concern because training
RNNs with a large number of unrolled timesteps (as we expect
is necessary for learning to play Montezuma’s Revenge) can
have a high computational cost [8].

Second, by connecting layers only at fixed intervals, we
explicitly encode temporal abstraction in the network. One
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Fig. 3: The four architectures evaluated. Left Top: RQN Left Bottom: The sRQN-merge. Right Top: The sRQN-merge, in which
each layers outputs are concatenated before being passed to the output layer. Right Bottom: The hierarchical sRQN, in which
hidden states are passed to higher layers only at set intervals.

argument against this approach is that LSTMs should be able
to learn these patterns automatically, so by only connecting
layers at intervals we are enforcing a constraint that may limit
the network. This is a valid concern and one we try to address
empirically.

VI. EXPERIMENTS

A. Experimental Setup
1) Four Room and Maze Domains: In order to assess the

strengths of these different models, we evaluate them on a set
of test problems. We consider the Four room domain presented
originally in [28], using a formulation similar to that of [29]
shown in figure 4. This is a classic hierarchical learning task,

which can also easily be scaled to make more difficult or be
adapted to the partially observable case.

The MDP is a square maze consisting of four rooms. The
agent starts in the bottom left corner and the goal is to reach
the top right corner. Doing so gives a reward of 1, and each
step incurs a cost of -0.01. The agent may move east, west,
north, or south. In each case, the agent is deterministically
transitioned to the next state unless it runs into a wall, in which
case it remains in the same location. Each episode is capped
at (2∗ room−side− length∗number−of − rooms)2 steps,
which is selected based on a property of random walks.

2) Evaluation Criteria: To evaluate the performance of dif-
ferent algorithms on the maze MDP, we consider two metrics.
First is the average episodic reward, which has the advantage
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Fig. 4: The four room domain. Agent starts in bottom left with a goal state in upper right.

of being easy to gather and interpret, but the disadvantage that
it does not necessarily convey how well an agent has learned
the values of states.

The second metric is how quickly the estimated state-
value of the initial state in the maze converges to its true
value. This metric was used to assess a recently proposed
hierarchical learning method [1], and has two advantages.
First, it conveys how quickly value propagates through the
state space, which may demonstrate the benefit of hierarchical
approaches. Second, it relies on the agent learning the absolute
value of a state correctly rather than just its relative value. The
primary disadvantage of this metric is that it is highly sensitive
to hyperparameter settings.

3) State Representation: What representation of the state
should be used as input to the models? We empirically
evaluated four options:

1) coordinates
2) one-hot tabular
3) one-hot row and column
4) one-hot row, column, and room

Figure 5 shows the results of training a DQN for fifty, single-
episode epochs with the different state representations. From
these results, we concluded that the row and column and the
row, column, and room representations were both acceptable
options. The tabular option likely performed poorly as a result
of too little training time.

4) Number of Training Timesteps: For how many backprop-
agation through time (BPTT) steps should recurrent models
be trained? Figure 6 shows the results of evaluating different
number of rollout timesteps. These results indicate that values
within a certain range perform comparably, but that once a
high enough number of steps are unrolled, learning becomes
difficult. This may be the case because for value to propagate
to states early in the maze, it must do so through more layers
in the network.

B. Results

Each network architecture was trained with a variety ran-
domly selected hyperparameter values (learning rate, frozen
target period, replay memory capacity, BPTT timesteps, state
representation, exploration probability, number of hidden units)
for a relatively low number of episodes. From this we decided
upon a set of reasonable hyperparameters to use across all
models. We then ran the four experiments below, simulating
each model twice for between 400 to 500 episodes (constant
within a given experiment) and taking the better run as
reflected by reward and state-value graphs.

1) Four Room Domain: This first experiment assessed the
performance of each model on the four room MDP. The
hsRQN and RQN achieved similar reward and start-state value
curves. As can be seen in figure 7 The hsRQN estimate of
the start state value increased with the fewest episodes and
ultimately slightly overestimated the correct value of the state.
The RQN exhibits a similar learning curve though ultimately
underestimated the value. The sRQN-merge model performed
better than the stacked network without the merge, but both
performed relatively worse than the hsRQN and RQN. To
further visualize what the network learns, we plot heatmaps
of the predicted value of states by the hsRQN after different
episodes in the experiment in figure 8.

2) Single Room Maze: In our second experiment, we re-
moved the walls from the maze thereby eliminating problem
subtasks. We expected that this would diminish the advantage
of the hsRQN over the RQN because this learning in this
task should not benefit significantly from temporal abstraction.
Performance of the models as measured by average episode
reward is quite similar. The RQN propagates value back to the
start state most quickly though overshoots the true value. The
hsRQN converges to closest to the true value, again followed
by the sRQN-merge and sRQN respectively. We were surprised
that the hsRQN seemed to perform best at this task. This may
be a result of the small sample size of runs for each model,
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Fig. 5: Comparison of DQN performance with different state representations

Fig. 6: Comparison of RQN performance with different numbers of BPTT timesteps

or the larger number of parameters in the hsRQN
3) Larger Mazes: By adding additional rooms and therefore

subtasks, we conjectured that the stacked networks would gain
a larger advantage over the RQN. We tested the models on a
nine room maze with each room having a side length of three.
In this experiment, the RQN and hsRQN again performed
comparably, both converging to relatively close start state
values. This similarity in performance may be due to the fact
that this maze is smaller than the previous two, and therefore
less effectively reflects differences between the models.

4) Partially Observable Mazes: The previous experiments
are analogous to showing a player the entire maze in Mon-
tezumas Revenge. How do these models perform if we instead
only provide the agents state in the current room? This last
experiment attempted to answer that question. In this case,
the agent is only provided with the one-hot row and column
representation of its current room. As a result, the start-
state value is not as easily interpreted. All four models have
difficulty learning correct state-values, though the trend of
values indicates that training for more iterations may have

allowed the models to converge to the true values. The hsRQN
again seems to perform best, though towards the end of the
simulation is surpassed in performance by the RQN.

VII. DISCUSSION

Our experimental results are inconclusive as to the ability
of the stacked recurrent models to use temporal abstraction to
improve learning. The hsRQN generally performed better than
the RQN, whereas the other stacked models performed worse.
These results may be due to the low number of sample runs
of each network, or they may reflect significant underlying
traits of the different models. We believe it is likely that such
differences would be more clearly reflected in the performance
of the models on a more complex task, for example in
application to playing Montezuma’s Revenge.

VIII. CONCLUSION

In this paper we proposed the stacked recurrent Q-Network,
a novel model we conjecture is capable of taking advantage of
temporal abstraction to improve learning ability. We assessed
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Fig. 7: Value and reward graphs for the four room MDP. The correct state value is 0.83

Fig. 8: Estimated state values as learning progresses.

Fig. 9: Value and reward graphs for the single room maze.

variations of this model on a set of test problems. While these
results indicate the proposed model shows promise, we are
unable to say conclusively whether it truly provides much
benefit over the relatively simpler RQN. We believe this can
be determined by testing the model on more challenging tasks.

We also discussed the Atari 2600 game Montezumas Re-
venge, the main challenges presented by this game, and some
of the potential solutions to these challenges. We consider
Montezumas Revenge to be a particularly well suited testing
ground for not only hierarchical methods, but also for those
overcoming issues of sparse rewards and partial observability.

We next intend to compare the performance of the hsRQN
and RQN in learning to play Montezuma’s Revenge, as well as
to consider certain extensions to the proposed model such as
training on increasingly long sequences and adding additional
layers during training.

APPENDIX A
PARTIAL OBSERVABILITY IN MONTEZUMAS REVENGE

We present an example of partial observability in Montezu-
mas Revenge where the agent must remember the full history
to act optimally.
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Fig. 10: Value and reward graphs for the nine room maze.

Fig. 11: Value and reward graphs for the partially observable case

APPENDIX B
TECHNICAL DETAILS

All neural network models were developed using Theano
[24] and Lasagne [25]. All code used for the project is
available at https://github.com/wulfebw/hierarchical rl. Opti-
mization We use stochastic gradient descent with nesterov
momentum to perform optimization. We found that learning
progressed more smoothly than with adaptive learning rate
methods such as Adam. Adam might have performed compa-
rably with different learning rate, beta1, and beta2 settings,
but it also seems that adapative learning rates may have
disadvantages with nonstationary input distributions

We tested the models with a range of hidden layer sizes. In
general it did not significantly impact learning so we used very
few hidden units - between four and twenty for most tests.

We found that varying learning rate and the frozen target
period had a dramatic effect on learning, particularly on how
quickly value was propagated to the start state. We used
a learning rate of 0.01 and frozen interval of 100 updates
for training the networks in the above experiments. These
values occasionally resulted in unstable learning, but seemed

to produce the best results as measured by value propagation.
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Fig. 12: The explorer acquires the key in the first room of the maze.

Fig. 13: The explorer opens a door with the key, losing it in the process and moves towards the next room. Note the second
door on the left side of the room.

Fig. 14: The explorer enters into the second room. He no longer has the key in his inventory, so has no way of knowing whether
he has just left the first room or whether he has already retrieved an additional key and unlocked the second door in the first
room. The explorer may spend an arbitrary amount of time in this second room, and therefore may be required to maintain an
arbitrary number of frames to know whether the second door is unlocked.
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