
UAV Collision Avoidance Policy Optimization with Deep Reinforcement Learning

Blake Wulfe
Department of Computer Science

Stanford University
Stanford, CA 94305

wulfebw@stanford.edu

Abstract

The safe operation of unmanned aerial vehicles de-
mands effective collision avoidance strategies. One
method for solving the collision avoidance problem is
to formulate it as a Markov decision process and solve
for the action to take in any situation so as to maxi-
mize safety and efficiency. Solving for such a policy
using dynamic programming can be time-consuming
and requires discretizing the continuous state space,
thereby potentially reducing safety. An alternative solu-
tion method is to use reinforcement learning with func-
tion approximation to learn a parameterized value func-
tion that maps directly from the continuous state space
to state-action values, from which an approximately-
optimal policy can be derived. We demonstrate that one
such method, the Deep Q-Network [12], produces safer
and more efficient policies than does value iteration,
and does so in less time. We further investigate and
present conclusions regarding a number of extensions
to the baseline deep reinforcement learning model, in-
cluding efficient sampling of the state space to speed
learning, alternative solution methods such as Double
DQN and Asynchronous Advantage Actor-Critic, and
transfer learning of different reward structures.

Introduction
As UAVs become more widespread in use, they must be
equipped with collision avoidance systems in order to main-
tain airspace safety. The Traffic Collision Avoidance Sys-
tem (TCAS) and its long-term replacement ACAS X play a
central role in ensuring the safety of manned aircraft, and a
number of solutions are being developed for the unmanned
case [10]. One solution in development, ACAS Xu, takes a
similar approach to ACAS X, and derives a collision avoid-
ance strategy by formulating the problem as a Markov de-
cision process (MDP) and solving for a policy using value
iteration [9]. One major advantage of this approach is that
researchers design the reward structure of the system rather
than the full behavior of the policies, thereby producing su-
perior collision avoidance strategies with reduced effort. As
a result, the usefulness of these policies depends upon the
extent to which the reward structure of the MDP captures
the true values of the airspace. In order to assess the fitness
of various policies, a large number of potential reward struc-
tures must be considered. Solving for this set of policies can

be time consuming when using value iteration (requiring ap-
proximately 60 hours on a 16 core machine), and is further-
more sub-optimal due to the discretization of the state space.

Deep reinforcement learning (DRL) is an alternative
method for learning policies in challenging MDPs that has
seen recent success in a variety of control tasks [12, 17,
4]. DRL parameterizes a value function, policy, or learned
model with a neural network, thereby improving the scal-
ability of the underlying algorithm. Although the collision
avoidance setting differs from previously considered appli-
cations of DRL in that value iteration is a feasible solution
method, we hypothesize that DRL may yet be well suited
to this problem for three reasons. First, DRL benefits from
generalization between states - by learning a parameterized
function of the state space, these models may need to per-
form fewer updates in order to arrive at a good policy. Sec-
ond, DRL allows for efficient state and state-action sampling
- by focusing only on the state-action pairs that occur under
a reasonable policy, we may save computation. Third, DRL
may benefit from superior transfer learning than does value
iteration. We present empirical evidence that supports the
first and second hypotheses, as well as initial evidence sup-
porting the third.

While our experiments ultimately indicate that DRL ap-
proaches outperform dynamic programming, accomplishing
this in practice required extensive hyperparameter tuning,
investigation into sampling methods, and experimentation
with various algorithms. As such, we present experiments
and results for each of these topics in addition to experimen-
tal results comparing the baseline DRL and dynamic pro-
gramming methods.

Related Work
Policy Compression
A prerequisite question to answer prior to applying DRL to
the collision avoidance problem is, “can neural networks ef-
ficiently represent UAV collision avoidance policies?”. Al-
though neural networks are powerful function approxima-
tors, it is plausible that the significant variation of the value
function across the relatively large state-space considered
might pose challenges to learning a value function mapping
with reasonably-sized networks. Julian et al. addressed this
question, finding that a neural network can be used to com-

State Variable Min Max Units
ρ 0 60760 ft
θ -pi pi rad
ψ -pi pi rad
vown 0 1200 ft/s
vint 0 1200 ft/s
τ 0 100 sec
prev ra 1 5 n/a

Table 1: State variables for the UAV collision avoidance
problem: ρ gives the range between the aircraft, θ the rel-
ative angle, ψ the relative heading, vown the ownship veloc-
ity, vint the intruder velocity, τ the time until loss of vertical
separation, and prev ra the previous resolution advisory (i.e.,
action).

press a 2GB Q-value table to 2MB, and in doing so improve
the performance of the policy derived from that value func-
tion in terms of safety and efficiency [7].

Deep Reinforcement Learning
DRL has recently seen a great deal of success. For exam-
ple, it has been used to develop autonomous agents capa-
ble of surpassing human-level performance in challenging
games such as Go [17], has enabled the development of sys-
tems capable of learning to drive simulated automobiles di-
rectly from high-dimensional visual input [11], and has been
used to learn simulated, robotic control policies [6]. Cen-
tral to this success is the ability of neural networks to dra-
matically improve scalability by allowing for generalization
of learned behavior to unseen settings and efficient process-
ing of high-dimensional input. Discussion of specific meth-
ods for efficient sampling (prioritized replay), alternative
solution methods (Double DQN, Asynchronous Advantage
Actor-Critic), regularization (dropout), and transfer learning
are given in the methods section or in the appendices.

Problem Formulation
We consider a MDP in which the action of one UAV, the
“ownship”, is controlled, and that of another, “the intruder”,
is not. The state space is seven dimensional, and consists of
the values presented in table 1. The previous action taken
by the agent, referred to as the previous resolution advisory,
is incorporated into the state in order to make it Markovian
with respect to rewards dependent on reversals. The agent
can take one of five actions, which correspond to standard
rate (3◦) and half-standard rate (1.5◦) turns to the left and
right, as well as an action to advise a straight trajectory.

The transition model of the MDP uses Dubin’s kinematic
equations [3] to propagate the state forward in one second
intervals. The heading of both aircraft is drawn from a Gaus-
sian with mean being the advised action and a standard de-
viation of 0.0175 ◦, the velocity of the ownship and intruder
are similarly distributed as a Gaussian with standard devia-
tion 1.64 ft/s and 3.64 ft/s respectively. The rewards of the
MDP additively comprise a structure selected to produce a
policy reflective of the values of airspace stakeholders, and

Figure 1: Depiction of the state variables in the UAV colli-
sion avoidance problem.

specifically consist of exclusively negative rewards for alert-
ing, being in conflict (within 4000 ft), being in an NMAC
(within 1800 ft), continuing to alert, switching to a “clear
of conflict” (i.e., straight) action too early, reversing, and
strengthening advisories.

Background and Methods
MDP
We model the collision avoidance problem as a MDP, which
consists of a set of states S, actions A, transition probability
function, P , deterministic reward function,R, start state dis-
tribution ρ, and discount factor γ. The maximum expected
discounted returns or value of a state satisfies the Bellman
optimality equation:

V ∗(s) = max
a

R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

Treating this equation as an update rule gives the value
iteration algorithm, a dynamic programming method that
solves for an optimal set of values that may be used to derive
a policy.

Reinforcement learning
In reinforcement learning [20], transition and reward mod-
els are assumed to be unknown, and an agent instead uses
experience from interacting with the environment to learn a
value function or policy.

DQN The temporal difference algorithm Q-learning min-
imizes the squared error between the current estimate of a
state-action value and a bootstrapped estimate of the opti-
mal value of the next state plus reward. Parameterizing the
Q-value function with a neural network yields the deep Q-
network algorithm [12], which minimizes the same loss in
batches of experience:

LossDQN =
∑

s,a,r,s′

(r + γmaxaQ̄(s′, a; θ)−Q(s, a; θ))2

Two methods are used to stabilize learning. First, a replay
memory stores experience tuples (s, a, r, s′), from which
batches are sampled to perform updates. This reduces corre-
lations between the samples, and also leverages the parallel
computation across batches using GPUs. Second, a target
network (denoted by Q̄) provides next state values, and is
updated periodically with the weights of the prediction net-
work, thereby further stabilizing learning.

Double DQN Q-learning and DQN have been shown to
overestimate state-action values [5], which can diminish per-
formance. Intuitively, this results from the fact that the algo-
rithm uses a max operation over a set of approximate values,
which biases towards selecting over-estimates of the value
function [18]. The method of double estimators can be used
to mitigate this issue, and when applied in the context of
Q-learning is referred to as Double Q-learning (or Double
DQN in the DRL context) [22]. In practice, this amounts to
using the best action of the prediction network rather than a
max over the values of the target network when computing
the loss:

LossDouble−DQN =∑
s,a,r,s′

(r + γQ̄(s′, argmaxaQ(s′, a; θ); θ)−Q(s, a; θ))2

State space sampling
Reducing the number of samples an algorithm must see to
reach convergence can dramatically speed learning. A vari-
ety of methods exist for reducing sample complexity, though
we focus on the subset inspired by prioritized sweeping [13]
and the more recent prioritized replay algorithm [16].

The intuition behind these approaches is that the state-
values that should be next updated are those near states that
previously gave “surprising” updates. Prioritized sweeping
accomplishes this by maintaining a priority queue of states
to update, prioritizing by the td-error of the transitioned-to
state. Prioritized replay, which does not require a transition
model, also prioritizes by td-error, but does so by performing
weighted sampling from a replay memory.

Ideally, prioritized replay would sample new experience
from areas of the state-space that are surprising so as to avoid
overfitting noisy features of surprising transitions. Since a
model is available in our setting, we take this approach - i.e.,
we adapt the initial state distribution ρ during training so as
to re-sample experience from regions of the state-space that
have previously been surprising, and consider the following
metrics:
• td-error: the heuristic used by prioritized replay and pri-

oritized sweeping: r + γmaxaQ̄(s′, a; θ)−Q(s, a; θ)

• Optimal action changes: this approach forward propa-
gates states through the network after performing an up-
date, and states for which the optimal action changed are
stored, prioritized again by td-error.

• td-error overestimates: our problem as formulated con-
sists exclusively of negative state-values. This method
aims to reduce state-values as quickly as possible by only
prioritizing states that are assigned values more positive
than their estimates.

Transfer learning
Transfer learning with neural networks has seen success in
the supervised setting [14]. The intuition behind transfer
learning is that initial layers in a neural network can derive
abstract features that are useful for a variety of applications.
Transfer may be performed in the DRL setting by training a
neural network on one set of rewards, the weights of which
are used to initialize a second network used in learning the
optimal value function for a second set of rewards.

Experiments
In order to compare the effectiveness of the various methods,
we solve for value functions in a series of experiments in
which only one aspect of training differs within each exper-
iment between training runs. The resulting policies are then
evaluated qualitatively through visualization of the learned
state-action function, and quantitatively using both conver-
gence metrics as well as through performance in a set of
10,000 simulated encounters.

These encounters were generated by a Bayesian network
learned from real-life flight trajectories, and differ signif-
icantly from the relatively simple trajectories used during
training. By evaluating against encounters generated from a
fundamentally different MDP, we avoid over-fitting and are
more likely to produce policies that may generalize in real-
life application. The primary policy-evaluation metrics are
the probability of near mid-air collisions (NMAC), proba-
bility of alerting, and the probability of reversing a previ-
ous advisory. At the time of evaluation, networks have been
trained for approximately 30 hours each. Additional network
implementation and training details are provided in the ap-
pendices.

Prioritized Sampling
We train three networks with prioritized start state sampling
as well as a control network. For each network using prior-
ity sampling, 25% of the sampled states were drawn from a
priority queue that is periodically updated with start states.
The relatively small degree of sampling limits bias in the
network towards more frequently sampled areas of the state-
space. Figure 2 shows convergence metrics during training,
and table 2 gives the final performance metrics for the three
methods and control network. The convergence graphs are
inconclusive as to the significance of priority sampling in
speeding training, though simulation results indicate sam-
pling may improve performance. We expect that a higher
priority sampling probability would yield more significant
convergence impact.

Regularization
Recent DRL work generally does not report the use of
traditional neural network regularization methods such as
dropout or L2 weight regularization. When training and
evaluation of an agent is performed on an identical task,
overfitting to that task may not be an issue. In contrast, in the
case of learning UAV collision avoidance policies, not only
do we train and evaluate the agent in separate environments,
but we also ultimately intend to apply the learned policies in

Figure 2: Convergence metrics for prioritized sampling
methods considered. From the top: (1) maximum change in
Q-value between updates (2) mean change in Q-value be-
tween updates (3) mean Q-value during training (4) percent
change in optimal action between updates.

Sampling Method Pr(nmac) Pr(alert) Pr(reversal)
no sampling 0.000191 0.481240 0.000826
td-error 0.000197 0.514591 0.010091
optimal-action 0.000026 0.575355 0.010304
td-error+ 0.000031 0.518542 0.002060

Table 2: Aggregate simulation metrics for various start-
state sampling methods. No sampling refers to the con-
trol run, optimal-action to the prioritization by optimal ac-
tion changes, and td-error+ by td-error overestimates exclu-
sively.

the airspace. For this reason, we experimented with the use
of regularization in our models, and found it to be critical to
learning smooth policies.

In supervised learning tasks, training is frequently per-
formed with 50% dropout probability for units in hidden lay-
ers [19]. We initially experimented with 40%, 20%, and 5%
dropout probabilities, but found that these values dramat-
ically over-regularize the network. We then experimented
with much smaller dropout probabilities of 1% and .1%,
finding that these led to appropriately regularized policies,
with 1% dropout performing the best. Figure 3 shows con-
vergence metrics during training, figure 4 shows visualized
policies for differing amounts of dropout, and table 3 pro-
vides aggregate simulation results for the different policies.

Notably, when training with dropout, the change in opti-
mal actions between updates converges much more slowly,
and the max change in Q-value does not converge at all. This
is because these metrics are computed by comparing two
separate forward propagations of the network in which the
first uses dropout while the second does not. This approach
is taken in order to limit the computational expense of com-
puting the convergence metrics, and results in different units
activating across propagations.

Figure 3: Convergence metrics for dropout probabilities con-
sidered. From the top: (1) maximum change in Q-value be-
tween updates (2) mean change in Q-value between updates
(3) mean Q-value during training (4) percent change in op-
timal action between updates.

>

>

−1 −0.5 0 0.5 1

·104

−1

−0.5

0

0.5

1

·104

x (ft)

y
(f
t)

Neural Net action

>

>

−1 −0.5 0 0.5 1

·104

−1

−0.5

0

0.5

1

·104

x (ft)

y
(f
t)

Neural Net action

>

>

−1 −0.5 0 0.5 1

·104

−1

−0.5

0

0.5

1

·104

x (ft)

y
(f
t)

Neural Net action

Figure 4: Left to right, policy plots for networks trained with
0, 0.001, and 0.01 probability of dropping units. These pol-
icy plots show the optimal action for the ownship (located at
the center of the plot and represented by a black arrow) to
take for every position of the intruder (the heading of which
is indicated by the arrow in the top right of each plot). In
the depicted plots, both aircraft are traveling in the same
direction, at 200ft/s, equal elevation, and with the ownship
not having taken a previous action. Light green, dark green,
blue, gray, and white indicate strong left, left, right, strong
right, and straight actions respectively.

State-space Discretization
A primary benefit of the DQN over value iteration is its abil-
ity to learn a mapping directly from the continuous state-
space to state-action values rather than discretizing the state-
space; however, since our primary goal is to use a DQN to
learn policies rapidly in order to tune system parameters,
we must ensure that the policies learned by the DQN cor-
relate well with the policies learned through value iteration.
Furthermore, because the reward structure is assumed fixed
for this research, and that reward structure has been tuned
to optimize the performance of discrete value iteration, we
hypothesize that discretizing the dynamics (i.e., next state
transitions) while training the DQN will give superior eval-
uation performance as well as allow for a fairer comparison
of the two methods.

To accomplish this, DQN training was performed as

Dropout Probability Pr(nmac) Pr(alert) Pr(reversal)
0.0 0.000195 0.552565 0.002850
0.001 0.000033 0.537368 0.012232
0.01 0.000028 0.487603 0.000290

Table 3: Simulation performance of DQN trained with vary-
ing dropout probability. 0.0 indicates the control network
trained without dropout. Performance improves with in-
creasing dropout for both pr(nmac) and pr(alert).

usual, except that for each state, a set of next states is re-
turned along with their probability weights as determined
by multilinear interpolation. These next states and weights
are then stored in a replay memory, and during training the
loss of each (s, a, r, s′, w) tuple is weighted by its transition
probability w. As can be seen from figure 5, the network
trained on discretized dynamics converges more slowly than
the control network. This is at least partially attributable to
the heavy regularization effect of discretizing the dynamics.

Figure 6 shows policy and value plots for the Q-value
table solved for using value iteration, and for the network
trained with discretized dynamics. These visualizations in-
dicate that the network converged to a policy that resembles
that of the table, but that is often more conservative (i.e.,
advises non-straight actions where the table does not). This
may indicate that the network had not yet converged, or that
the combination of dropout and discretized dynamics over-
regularized the network. Nevertheless, the empirical results
given in table 4 show that the network trained on discretized
dynamics outperforms the value iteration policy in all eval-
uation metrics considered.

Figure 5: Convergence metrics for training on discretized
dynamics. From the top: (1) maximum change in Q-value
between updates (2) mean change in Q-value between up-
dates (3) mean Q-value during training (4) percent change
in optimal action between updates.

Double DQN
As previously stated, DQN frequently overestimates state-
action values, often to the detriment of the policy. In an-

>

>

−3 −2 −1 0 1 2 3

·104

−3

−2

−1

0

1

2

3

·104

x (ft)

y
(f
t)

Q Table action

>

>

−3 −2 −1 0 1 2 3

·104

−3

−2

−1

0

1

2

3

·104

x (ft)

y
(f
t)

Neural Net action

>

>

−1.5 −1 −0.5 0 0.5 1 1.5

·104

−1.5

−1

−0.5

0

0.5

1

1.5

·104

x (ft)

y
(f
t)

Q Table action

>

>

−1.5 −1 −0.5 0 0.5 1 1.5

·104

−1.5

−1

−0.5

0

0.5

1

1.5

·104

x (ft)

y
(f
t)

Neural Net action

>

>
−3 −2 −1 0 1 2 3

·104

−3

−2

−1

0

1

2

3

·104

x (ft)

y
(f
t)

Q Table action

>

>
−3 −2 −1 0 1 2 3

·104

−3

−2

−1

0

1

2

3

·104

x (ft)

y
(f
t)

Neural Net action

>

>

−1.5 −1 −0.5 0 0.5 1 1.5

·104

−1.5

−1

−0.5

0

0.5

1

1.5

·104

x (ft)

y
(f
t)

Q Table action

>

>

−1.5 −1 −0.5 0 0.5 1 1.5

·104

−1.5

−1

−0.5

0

0.5

1

1.5

·104

x (ft)

y
(f
t)

Neural Net action

Figure 6: Policy and value plots for the Q-value table solved
for with value iteration and the DQN trained on discretized
dynamics. Top two plots show the two aircraft in a parallel
geometry, and the bottom two at a head-on geometry. The
table policy contains sharp edges because nearest neighbor
is used to select the value of a state rather than an interpo-
lation method. The value function plots depict the Q-values
for the straight action with varying location of the intruder
UAV. Light green, dark green, blue, gray, and white indicate
strong left, left, right, strong right, and straight actions re-
spectively.

Policy Pr(collision) Pr(alert) Pr(reversal)
Q-table 0.000019 0.551474 0.015865
DQN 0.000017 0.545651 0.011015

Table 4: Results for the Q-table and DQN trained on
discretized dynamics. Evaluation was performed against
10,000 encounters.

Policy Pr(nmac) Pr(alert) Pr(reversal)
DQN 0.000194 0.464866 0.013367
Double DQN 0.000036 0.568237 0.000936

Table 5: Results for Double DQN and DQN against 10,000
encounters.

alyzing the evaluation encounters, the DQN policy would
frequently alert later than the value iteration policy, often
resulting in an NMAC. Although overestimating Q-values
does not necessarily cause this issue, we hypothesize that it
may be a factor, and as such trained and compared double
DQN and DQN policies. Figure 7 shows the mean Q-value
during training for both models, and clearly illustrates that
Double DQN underestimates rather than overestimates Q-
values. Table 5 gives aggregate simulation metrics for Dou-
ble DQN and DQN, and suggests that underestimating Q-
values leads to a higher alert rate as anticipated.

Figure 7: Mean Q-value for DQN and Double DQN.

Transfer
To evaluate the ability of the DQN to adapt pre-trained
weights to a new reward structure, we first trained a net-
work to convergence on the original reward structure, and
then evaluated three models on a different reward struc-
ture. Because the hyperparameters of the DQN are tuned to
learn a policy from scratch, we compared a control DQN, a
DQN with transferred weights but unchanged hyperparame-
ters, and a DQN with transferred weights and hyperparame-
ters better suited to the transfer task. In this experiment, we
consider the simple case of changing a single reward value,
specifically increasing the cost of conflict from -1 to -5.

Figure 8 shows convergence metrics during training of
the three models. The network using transfer weights and
optimized hyperparameters seems to converge more quickly
than the network trained from randomly-initialized weights,
as can be seen from the combination of its mean change in
Q-values being the lowest, while its mean Q-value converges
to the same value as that of the control network, albeit more
quickly. Unfortunately, since these networks were necessar-
ily trained with different hyperparameters, this comparison
is not entirely fair since it is possible that the convergence
metrics simply reflect the use of a lower learning rate, larger
target update interval, and increased batch size. Neverthe-
less, given that each of these parameters and others have
been optimized for the respective tasks, it seems likely that
the transfer network benefits from a significantly improved
convergence rate.

The second conclusion that can be drawn from the conver-
gence visualizations is that network transfer can be harmful
to convergence if additional hyperparameter tuning is not
performed. This can be seen most prominently in the ex-
aggerated increase in the mean Q-value during training of
the transfer network without tuning. We believe the reason
for this mean Q-value increase is that the combination of a
large initial learning rate and large initial loss “kills” a large
fraction of the hidden layer ReLU units. This eliminates a
balancing effect against the bias terms, which are large posi-
tive values (since they are not included in L2 regularization),
yielding large, positive output values. Because in this case
training begins with a low target update interval, these val-
ues are then transferred to the target network resulting in a
self-reinforcing cycle.

Figure 8: Convergence metrics during training over transfer
and control networks. From the top: (1) maximum change
in Q-value between updates (2) mean change in Q-value be-
tween updates (3) mean Q-value during training (4) percent
change in optimal action between updates.

Conclusion
This research compared deep reinforcement learning meth-
ods to traditional dynamic programming methods in deriv-
ing solutions to a UAV collision avoidance problem. We

considered different facets of training such as prioritized
sampling, regularization, discretization of dynamics, alter-
native solution methods, and transfer learning, ultimately
concluding that DQN can outperform value iteration both
in terms of evaluation performance and solution speed.

This superior performance comes at a cost; namely exten-
sive hyperparameter tuning and specialized hardware. Fur-
thermore, the results presented in this paper potentially suf-
fer from an “overfitting” of the relatively small encounter
set used throughout. Future work may address each of these
issues. For example, Asynchronous Advantage Actor-Critic
(see appendix 2) has been shown to outperform DQN with-
out requiring the use of GPUs. Addressing the latter concern
may be accomplished through evaluation of the learned poli-
cies on a larger set of encounters.

Additional future work may consider network training
across multiple GPUs, further investigation into transfer-
learning, and model-based methods that bridge the gap be-
tween those considered in this research.

References
[1] Martın Abadi et al. “Tensorflow: Large-scale machine

learning on heterogeneous distributed systems”. In:
arXiv preprint arXiv:1603.04467 (2016).

[2] James Bergstra et al. “Theano: Deep learning on gpus
with python”. In: NIPS 2011, BigLearning Workshop,
Granada, Spain. Citeseer. 2011.

[3] Lester E Dubins. “On curves of minimal length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents”. In: Amer-
ican Journal of mathematics 79.3 (1957), pp. 497–
516.

[4] Alex Graves et al. “Hybrid computing using a neural
network with dynamic external memory”. In: Nature
538.7626 (2016), pp. 471–476.

[5] Hado V Hasselt. “Double Q-learning”. In: Advances
in Neural Information Processing Systems. 2010,
pp. 2613–2621.

[6] Nicolas Heess et al. “Learning and Transfer of Mod-
ulated Locomotor Controllers”. In: arXiv preprint
arXiv:1610.05182 (2016).

[7] Kyle Julian and Mykel Kochenderfer. “Neural Net-
work Guidance for UAVs”. In: 2017.

[8] Diederik Kingma and Jimmy Ba. “Adam: A method
for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[9] Mykel J Kochenderfer, Jessica E Holland, and James
P Chryssanthacopoulos. “Next generation airborne
collision avoidance system”. In: Lincoln Laboratory
Journal 19.1 (2012), pp. 17–33.

[10] JE Kuchar and Ann C Drumm. “The traffic alert and
collision avoidance system”. In: Lincoln Laboratory
Journal 16.2 (2007), p. 277.

[11] Volodymyr Mnih et al. “Asynchronous methods for
deep reinforcement learning”. In: arXiv preprint
arXiv:1602.01783 (2016).

[12] Volodymyr Mnih et al. “Human-level control through
deep reinforcement learning”. In: Nature 518.7540
(2015), pp. 529–533.

[13] Andrew W Moore and Christopher G Atkeson. “Pri-
oritized sweeping: Reinforcement learning with less
data and less time”. In: Machine Learning 13.1
(1993), pp. 103–130.

[14] Maxime Oquab et al. “Learning and transferring mid-
level image representations using convolutional neu-
ral networks”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition.
2014, pp. 1717–1724.

[15] Benjamin Recht et al. “Hogwild: A lock-free ap-
proach to parallelizing stochastic gradient descent”.
In: Advances in Neural Information Processing Sys-
tems. 2011, pp. 693–701.

[16] Tom Schaul et al. “Prioritized experience replay”. In:
arXiv preprint arXiv:1511.05952 (2015).

[17] David Silver et al. “Mastering the game of Go with
deep neural networks and tree search”. In: Nature
529.7587 (2016), pp. 484–489.

[18] James E Smith and Robert L Winkler. “The opti-
mizer’s curse: Skepticism and postdecision surprise
in decision analysis”. In: Management Science 52.3
(2006), pp. 311–322.

[19] Nitish Srivastava et al. “Dropout: a simple way to pre-
vent neural networks from overfitting.” In: Journal of
Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[20] Richard S Sutton and Andrew G Barto. Reinforce-
ment learning: An introduction. Vol. 1. 1. MIT press
Cambridge, 1998.

[21] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude”. In: COURSERA: Neural Net-
works for Machine Learning 4.2 (2012).

[22] Hado Van Hasselt, Arthur Guez, and David Sil-
ver. “Deep reinforcement learning with double Q-
learning”. In: ().

[23] Ronald J Williams. “Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning”. In: Machine learning 8.3-4 (1992),
pp. 229–256.

[24] Bing Xu et al. “Empirical evaluation of rectified acti-
vations in convolutional network”. In: arXiv preprint
arXiv:1505.00853 (2015).

hyperparameter value
initial learning rate 0.001
final learning rate 0.00001
initial target update interval 100
final target update interval 20000
replay memory size 10000000
optimizer adamax
adamax beta 1 .99
dropout probability 0.01
l2 regularization penalty 1e-6
discount factor .99
policy softmax
initial softmax temperature 6
final softmax temperature 3
initial batch size 16000
final batch size 64000
steps per episode 10
steps between training updates 10

Table 6: Final hyperparameter values for DQN training.

Appendix 1: Network Implementation and
Training Details

DQN and Double DQN were both implemented using
Lasagne and Theano [2]. Hyperparameter settings differed
between experiments as improvements were found during
the research. Table 6 gives the final hyperparameter values
used in training. Network sizes also differed across exper-
iments, with the final architecture being an eight-hidden-
layer network with 256 hidden units in each layer, except
for two central layers that contained 512 units each. See the
section below on network size for discussion. DQN training
was performed on an Nvidia DIGITS DevBox with four Ti-
tan X GPUs. Results presented are generally from networks
trained for 30 hours on a single GPU.

The following sections discuss subtleties of the various
hyperparameters with an emphasis on their role specifically
within the UAV collision avoidance problem.

Maximum Episode Steps The number of steps in an
episode in the UAV collision avoidance problem controls
the degree to which samples focus on straight versus turn-
ing previous advisories. This is because even though initial
states are sampled with random previous advisories, the op-
timal action will generally be the straight advisory. As such,
the longer the episode is run, the greater the bias toward
straight previous advisory samples.

The maximum steps per episode also impacts the state-
visitation frequencies - running episodes for longer time pe-
riods will sample from larger-range states because the UAVs
generally avoid each other provided softmax policy sam-
pling is run at a sufficiently low temperature.

Finally, as each simulation is run, the value of τ will tend
towards 0. As such, lower max step values with uniform ini-
tial distribution over τ yields more even coverage, whereas
longer max step values will bias towards τ values of zero.

State Normalization Prior to input to the DQN, the state
variables are normalized by subtracting their mean value and
dividing by their range. In the case of angle inputs, if the an-
gle is provided to the network directly, then a discontinuity
will exist in the policy, which can diminish performance. To
avoid this, we insert the normalized sine and cosine of the
angle into the network rather than the angle itself.

Baseline Start State Sampling Implicit in any DRL ap-
proach is a distribution over the encountered states. In the
UAV collision avoidance problem as formulated, sampling
states by uniformly sampling variables yields a heavy bias
toward low-range states. By sampling the x and y distances
between aircraft, and then converting to the polar-coordinate
state variables, more equitable state-visitation frequencies
can be achieved, which we found empirically improved poli-
cies.

Network size Our experiments indicated that larger net-
works better capture the variability within the collision
avoidance policy state-values. We compared three network
sizes, each with six layers, and each containing two interme-
diate layer sizes of 512 hidden units. The remaining layers
contained 512, 256, and 128 units each. Td-errors were on
average much lower for the larger networks, indicating that
this additional capacity enabled the network to remember
more of what had previously been learned.

Target Update Interval The update rate for the target net-
work significantly impacts training time because value in-
formation can propagate only after a target update is made.
We found that using a target update schedule that increased
the interval periodically by a constant amount dramatically
improved performance.

Optimization We considered three optimization methods:
Adamax [8], RMSProp [21], and stochastic gradient descent
with Nesterov momentum. Adamax slightly outperformed
RMSProp.

Non-linearity We compared three nonlinear functions for
use in the network: tanh, ReLU, and leaky ReLU [24]. The
leaky relu performs a max(x, 0.01) operation that is in-
tended to alleviate the “dying relu” issue. We found that
ReLU and leaky ReLU performed comparably given an ap-
propriate learning rate selection, and that tanh performed the
worst, but gave the smoothest policies.

Reward Baseline and Scaling Reward magnitude and
sign can impact DQN performance to varying degrees based
upon the nonlinearity used within the neural network. For
example, ReLU units can have difficulty fitting negative val-
ues, particularly when regularization is used, and tanh units
can have difficulty fitting output values with large magni-
tudes. We considered two methods to address these issues.

First, since all of the rewards in the UAV collision avoid-
ance problem are negative, we can “baseline” them by
adding a fixed constant to the reward values. We found
that this approach did not help with learning and frequently
caused the network to diverge due to the large initial errors.
Second, we experimented with reducing the magnitude of
the reward values, specifically reducing them by a factor of

10. We found that this approach yielded similar policies to
the original reward structure, and did not significantly speed
learning.

Gradient and Loss Clipping A popular method for stabi-
lizing learning in DRL agents is to clip (i.e., bound) the norm
of the gradient or the loss directly. We found this method to
be useful for this purpose, but that its use prevented the DQN
from learning appropriate reversal policies. The reason for
this is that reversals incur a large negative reward, but do
so quite rarely. Because the impact of these rare events is
limited by gradient clipping the network would not learn to
reflect it in the policy, and as such we did not use gradient or
loss clipping during training.

Appendix 2: Asynchronous Advantage
Actor-Critic

DQN exclusively parameterizes a value function with a
neural network. In this section, we consider a DRL algo-
rithm that parameterizes both its policy and value functions
with neural networks. Asynchronous Advantage Actor-
Critic (A3C) [11] uses policy and value networks to perform
REINFORCE [23] updates with a return baseline:

Lossπ = − log π(at|st; θ)(Rt − V (st; θ))− βH(π(st; θ))

Lossval = (Rt − V (st; θ))
2

Where Rt is the experienced return from state st, which
have been bootstrapped using the value network, and β is a
scaling factor on the entropy H of the policy that encour-
ages diverse action probabilities. Intuitively, the gradient of
this loss updates the policy to encourage the taking of actions
that have produced greater than expected returns, while si-
multaneously learning those expected returns by minimizing
the L2 loss for the value function. To overcome oscillation
in the policy from correlated updates, A3C executes many
agents in parallel, and makes Hogwild!-style [15] gradient
descent updates using experience batches from each of these
agents.

For this research, we implemented a thread-based version
of A3C in TensorFlow [1]. We do not yet have results on the
UAV collision avoidance task, and instead we present re-
sults on a toy cart pole problem. Figure 9 shows the average
steps per episode during training and action probabilities of
the agents as a function of the cart x position. A3C effec-
tively solves the task in 1,000 episodes, which takes approx-
imately 60 seconds on a macbook pro. While not shown,
DQN empirically takes much longer to solve the task. While
this might be due to particular advantages of low-bias meth-
ods in learning cart-pole policies, it may also indicate an
advantage of A3C in general, and we plan the compare the
algorithms in the primary UAV collision avoidance task.

Figure 9: Steps per episode versus training episodes, and ac-
tion probabilities as a function of cart x position.

