
Recognizing Cities from Street View Images

David Hershey and Blake Wulfe
Stanford University

450 Serra Mall, Stanford, CA 94305
dshersh@stanford.edu, wulfebw@stanford.edu

Abstract

In this research, we explore the ability of a computer to
determine the location of a photo from its pixel data. GPS
generally enables the geotagging of most images; however,
for photos without GPS data, it can be difficult to estimate
location. This problem can be difficult, as many cities have
similar visual characteristics and locations, and photos can
be arbitrarily uninformative. Despite these challenges, can
a computer correlate the potentially numerous visual cues
in an image with that image’s city of origin? We train a con-
volutional neural network, called LittlePlaNet, to answer
this question. We show that our approach achieves super-
human accuracy on a dataset of photos take from Google
Street View in 10 different cities. Furthermore, we also ex-
plore the limitations of our dataset by testing our model on
photos from Flickr, which contains geo-tagged images of
everything from landmarks to people.

1. Introduction
Since the advent of GPS technology, geo-tagged photos

have become ubiquitous. Most pictures taken with smart-
phones have coordinate data included in their metadata.
This information has a wide range of uses, from simply giv-
ing a bit more information to friends and family to enabling
services like Google Earth to display photos at many loca-
tions worldwide. This technology is popular for its ability
to connect people more intimately to photos taken around
the world.

Photos taken without GPS cannot be easily geo-tagged.
Traditionally, these photos must be manually labeled in or-
der to provide location data. This is a difficult task, as many
photos do not contain obvious distinguishing landmarks or
features. Humans achieve some degree of success despite
these challenges by looking for cues that reflect the location
of origin of the depicted scene. This project aims to assess
the capability of convolutional neural networks (CNNs) to
automatically learn to identify these features, and, by exten-
sion, the originating city of images.

In our formulation of this task we present the computer
with street-level images taken in 10 different cities, and ask
it to output the city in which the image was taken. As we
have formulated this as a classification problem, we exclu-
sively test for correct classification, so simply guessing a
nearby city gives no credit.

The final trained neural network, which we have named
LittlePlaNet, achieves super-human accuracy when tested
on our dataset. We employ multiple feature-visualization
techniques to attempt to extract information about how Lit-
tlePlaNet makes its classification decisions. These tech-
niques have allowed us to identify some unique attributes
of each of the cities considered.

We analyze the performance of the network further by
introducing a secondary dataset for testing. LittlePlaNet
maintains its accuracy on similar street-level photographs
from outside of the original dataset. As expected, the net-
work does not generalize well to photos unlike those on
which it was trained, for example, wide angle landscapes
or portraits.

The rest of this paper is organized as follows: section 2
covers related work, section 3 our methods, section 4 the
datasets we use, section 5 our results, and section 6 feature
visualizations.

2. Related Work
Historical attempts at solving the geo-location problem

have focused largely on feature retrieval. The most notable
application of this method was Im2GPS [3] which uses im-
age features to compare an image to similar images from a
dataset of millions of Flickr photos. Using similarity scores,
this method can achieve reasonable geo-location accuracy,
classifying roughly 25% of photos to country-level accu-
racy.

In an attempt to solve the problem of sparse data in rural
areas, [1] did work utilizing aerial photos for geolocaliza-
tion. This work uses a Siamese CNN to attempt to match
ground photos to aerial photographs with known locations.

Until recently, relatively little prior research has applied
CNNs to this task. In a 2015 project also for CS231n,

1



Hong and Peddada attempted this task with a subset of
the CRCV dataset [9] as well as geo-tagged Flickr photos.
The researchers achieved super human-level performance
in coarsely labeling cities in the CRCV dataset with a CNN
trained from scratch [4].

A recent paper from Google used a CNN for a simi-
lar geo-localization task [8]. They developed a platform
named PlaNet (hence the name of our network), which clas-
sifies photographs into variably sized regions across the
globe. They used a dataset from Flickr which contained
geo-tagged photos with a wide variety of subject matter.
Because of this, they achieve very high accuracy on images
with landmarks or cultural subject matter, which is more
likely to be the subject of a photo on Flickr. They attain
state of the art accuracy in global geo-localization, manag-
ing to classify pictures to city-level accuracy 25% of the
time.

3. Methods
We formulate the geo-location task as a classification

problem. For this, we have selected 10 cities from cultur-
ally and geographically diverse locations on the globe. The
input to our CNN is the raw pixel data from an image taken
in one of these cities. The output is a probability distri-
bution across the 10 cities, which is then translated into a
single prediction city. Other formulations of this problem
are possible, including regression onto coordinates, though
classification is the most natural fit for our dataset.

3.1. CNN Architecture

We have elected to use a GoogLeNet model [7] pre-
trained on the Places205 dataset [11] and the neural network
library caffe [5] for the implementation. We used a model
pre-trained on a scene-classification dataset because we be-
lieved this data would most closely resemble the images in
our dataset, and we selected the GoogLeNet model because
it achieved the highest available accuracy on the Places205
dataset.

This network is composed of a series of ”Inception Mod-
ules”, which are consist of parallel convolutions of differ-
ent breadth. The intuition behind convolutional filters is
that they capture spatial relationships within their breadth.
Therefore the key idea behind the inception module is that
by using simultaneous filters of different sizes, you can cap-
ture different resolutions of information at each stage of the
network. This allows you to detect and operate on both fine
features and features involving larger parts of the image.
These features are then concatenated into a single layer out-
put. There are also occasional max pooling layers which
serve to intermittently reduce the dimensionality of the data
flowing through the network.

The network ends with a single fully connected layer
which operates on the features extracted from the final in-

Figure 1: The GoogLeNet CNN Architecture [7]

ception module. This layer computes scores, f , for each
class, which correspond to how activated the network is for
each class. These class scores are then fed into a softmax
classifier according to the cross-entropy loss:

Li = −log(
efyi∑
j e

fj
) (1)

Where Li is the loss of the ith example and fj is the score
of the jth class. This serves as both the loss function for
training, and also intuitively as the probability of each class
at test time.

3.2. CNN Training

The network was trained using Caffe [5] on a NVIDIA
GRID K520 GPU. This straightforward interface allows for
rapid training and easy network and weight modification.

To speed training, we used transfer learning for our net-
work. This method involves using the weights of a CNN
trained on a different dataset in order to avoid having to
train an entire network from scratch. As mentioned above,
by selecting a network trained on the MIT Places205 dataset
[11], which contains photos of natural scenes, we hope to
utilize some of the scene recognition abilities of the pre-
trained layers.

One of the significant decisions in transfer learning is
determining which layers to retrain. As a baseline, we first
only retrained the fully connected layer of the architecture.
This fine-tuned network was able to achieve 52% valida-
tion accuracy after 1 epoch. We then replaced weights in
the last inception module and trained for 4 epochs on the
dataset, reducing the learning rate when validation accuracy
stagnated. For optimization, we used stochastic gradient de-
scent with initial learning rate of 1e-5 (multiplied by a con-

2



stant factor for later network layers) and momentum of .9,
training in batches of four images (chosen as the maximum
that would fit on the K520), and a small L2 regularization
penalty.

4. Dataset and Features
We obtained 100,000 street-level images using the

Google Street View API [2] 1. Data points were gener-
ated by requesting Street View images from random lo-
cations within 25 kilometers of the city center of the fol-
lowing cities: Barcelona, Washington DC, Detroit, London,
Moscow, New York, Paris, Rio de Janiero, San Francisco,
Sydney. The training set has approximately 90,000 of these
images selected at random, the validation set has 5,000 im-
ages, and the test set has 5,000 images.

The images were downloaded as 256x256 images, at the
API’s minimum aspect ratio. This guarantees that the im-
age contains a large deal of data from the scene; however, at
this zoom and resolution it is difficult to make out fine de-
tails such as text. It is possible the features present in high-
resolution images could contribute to higher performance.

At training and test time, the network subtracts the mean
train-set image from each image, randomly mirrors some
images, and crops the images to 227x227. This effectively
helps to artificially increase the size of the training set to
further prevent overfitting. Only this cropped pixel data is
used as input to the network, and during testing time a ran-
dom crop from the image is used to make a prediction for
that image.

5. Results
5.1. Test Accuracy

Table 1 gives the classification accuracy for LittlePlaNet
on the Street View dataset. LittlePlaNet achieves superhu-
man accuracy on this dataset, at a surprisingly high 75%.

Table 1: LittlePlaNet Classification Accuracy

Method Classification Accuracy
Random .1
Human .272

LittlePlaNet .753

Table 2 shows the accuracy of LittlePlaNet on each city
in the Street View dataset. Notably, some cities display
significantly different classification accuracies. There are a
number of reasons that could account for these differences,
such as similarity between cities, or noisy data. Both of

1Project code can be found at https://github.com/dmakian/LittlePlaNet

(a) Barcelona (b) Detroit

(c) Rio de Janeiro (d) Sydney

Figure 2: Randomized Street View Images from Four Cities

these explanations are explored below in our discussion of
TSNE visualization.

Table 2: LittlePlaNet City-by-City Accuracy

City Classification Accuracy
Barcelona .785

Washington DC .820
Detroit .875
London .735
Moscow .840

New York .405
Paris .479

Rio de Janeiro .640
San Francisco .615

Sydney .785

Figure 3 shows example images that are correctly clas-
sified by LittlePlaNet. These two photos, although not eas-
ily distinguishable by humans, are the type of photo that
LittlePlaNet generally classifies correctly. The New York
City photo contains distinctive architecture. The Detroit
photo has a chracteristic type of road with very few cars
and a unique building. Across the dataset, photographs with
clearly visible cars, buildings, and roads are generally cor-
rectly classified.

Figure 4 shows images that were incorrectly classified by
LittlePlaNet. Analyzing these photos, we can see the types

3



(a) New York (b) Detroit

Figure 3: Images Correctly Classified by LittlePlaNet

(a) Rio, Predicted: Barcelona (b) Paris, Predicted: San Francisco

(c) Detroit, Predicted: Washington
DC

(d) Sydney, Predicted: Paris

Figure 4: Images Incorrectly Classified by LittlePlaNet

of images that the network struggles to classify correctly.
Image (b) shows a photo from Paris that is not in the ar-
chitectural style of Paris. Alternatively, image (d) shows an
image of Sydney that has architectural elements very simi-
lar to those of Paris! These types of images are particularly
difficult for both humans and LittlePlaNet to classify cor-
rectly.

5.2. Performance on Flickr Dataset

In order to test the robustness of our model, we’ve in-
troduced a secondary dataset composed of 800 geo-tagged
images from Flickr. These images were taken in one of four

(a) London (b) New York

Figure 5: Correctly Classified Flickr Images

of the cities included in our initial dataset. Notably, these
images are not just street-level images. They also include
a wide range of completely unrelated photographs such as
portraits or artwork. We have tested our network on this
dataset without filtering the dataset in any way.

Table 3: Accuracy on Flickr Dataset

City Accuracy
Paris .125

New York .14
London .235
Sydney .18

Overall .17

As one would expect, our network does not perform well
on this very different dataset. Notably, the performance of
the network is above random, which is likely due to street-
level images or images of buildings in the Flickr dataset.
Examples of photos that the network correctly classified can
be seen in Figure 5.

6. Feature Visualizations
6.1. t-SNE Visualization

t-Distributed Stochastic Neighbor Embedding (t-SNE)
can be used to visualize extracted features in a low-
dimensional space while maintaining information about the
distance between those features in higher dimensions. Us-
ing the finetuned network, we extracted features after the fi-
nal pooling layer from 1000 randomly selected images and
visualized the 2-dimensional embeddings in figure 6.

6.1.1 Least Distinct Cities

All of the cities inhabit relatively distinct regions within
this space. The city that is least distinct is NYC. This is
in part due to the fact that fewer images of this city were

4



Figure 6: Visualization of features using t-SNE

randomly selected, but may also be due to some other un-
derlying cause because NYC also exhibited the worst clas-
sification accuracy. Figure 7 compares two images of NYC,
one from the densely-populated, center-right region and one
from the far left.

The out-of-region photo (a) was taken inside an office
building and perhaps partially explains the poor perfor-
mance of the classifier on NYC images. If indoor loca-
tions in NYC are more heavily accounted for within Google
Street View than in other cities, then it is likely that our
dataset contains a higher fraction of indoor images from
NYC than other cities.

Whether or not this phenomenon, if present, adversely
impacts classifier performance on images from NYC de-
pends upon the network’s ability to recognize indoor images
as such. If the network is able to recognize indoor images,
then their existence in the dataset would not necessarily di-
minish performance, because the classifier could learn to
predict NYC for these images. However, if the classifier
is unable to recognize indoor images (for example, because
they vary widely in appearance), then its prediction on such
images will likely be close to a random guess. We conjec-
ture that this second situation is more likely to be the case
for our classifier due to the relatively few indoor images in
the dataset. This potentially explains the poor performance
of LittlePlaNet in classifying images from NYC.

6.1.2 Most Distinct Sub-Cities

Also interesting to note is the relative location of certain
cities in this low-dimensional space. The primary group-
ings of Sydney and Moscow, for example, are particularly
distinct. Figures 8 and 9 show images from each city in
these far-right regions. These images are quite distinctive,
with those from Sydney containing the same tree species
and similar houses, and those from Moscow both contain-
ing large, white buildings.

(a) Out-of-region (b) In-region

Figure 7: Images of New York City. (a) An image that ex-
ists in the t-SNE graph far away from the cluster of NYC
images. (b) An image from inside the t-SNE NYC cluster.

(a) Sydney (b) Sydney

Figure 8: Two images from the primary t-SNE Sydney re-
gion.

(a) Moscow (b) Moscow

Figure 9: Two images from the primary t-SNE Moscow re-
gion.

6.1.3 Multimodal Cities

When plotted individually, some cities exhibit multiple, dis-
tinctive regions. This makes sense given that many cities
have neighborhoods with different characteristic traits. As
shown in figure 10, Paris exhibits two primary ”modes” in

5



(a) Mode 1 (b) Mode 2

Figure 10: Images representative of the primary subregions
of Paris. Image (a) from around the Montreuil Commune
in East Paris. Image (b) from around the Levallois-Perret
Commune in North Paris.

Figure 11: Occlusion heatmaps showing the effect of oc-
cluding a region of the image on the class score.
Left: London, Right: New York

the 1000 image sample considered.

6.2. Image Visualizations

The filters beyond the first layer of the CNN can be dif-
ficult to visualize as they are not operating directly on pixel
data. As such, other methods must be used to extract use-
ful information about how the CNN is making its classifi-
cations. One such method is occlusion, used by [10]. This
method involves sliding an occlusion box over an image and
performing a forward pass of the occluded image through
the network. By comparing the output score for the de-
sired label as each region is occluded, we can determine
which regions of the image are most important for making
each classification. The output of this method is a heatmap
which effectively demonstrates the impact of occlusion on
each region of the image. An example of this visualization
is shown in Figure 11.

Figure 12: Inclusion heatmap showing the effect of only
showing the network a region of the image on the class score

These heatmaps from two different cities indicate that
cars are one of the important features used to make classifi-
cations in our dataset. This is a logical feature to use, as cars
are both common in our Street View dataset and also infor-
mative of the city of origin. By exploring more heatmaps,
we have also seen that weather patterns such as cloud cover
can have an important impact on the output.

Another technique we developed, which was inspired by
the occlusion method, is the method of inclusion. In this
method, we occlude the entire image except for a small re-
gion. We then slide this included region across the image in
a method very similar to occlusion and use this to generate
a heatmap. This result of this method is displayed in Figure
12

In this image of San Francisco, it is clear that the dis-
tinctive houses activate the San Francisco score when they
are the feature left in the image. This indicates that our net-
work may make use of architectural patterns while making
classifications.

6.3. Saliency Maps

Another popular visualization technique is the use of
saliency maps, a technique developed by [6]. In this
method, a random noise image is optimized via gradient as-
cent to maximally activate a class score for a desired class.
Patterns often form in the resulting image that resemble im-
age features characteristic of the target class.

In Figure 13, we show the result of this method for the
San Francisco label. Although there is clear structure in this
image, there is no human-discernible meaning to it. This
is unsurprising, as unlike ImageNet labels which involve a
single target in the image, many factors contribute to the
label of a city. As already shown, cars, architecture, and
weather can all impact the output.

7. Conclusion
In this paper we considered the geolocalization task of

predicting which city an image originated from using only
the pixel data from that image. Despite the significant chal-
lenges posed by this problem, we showed that a CNN can
learn to correctly predict city of origin with super-human

6



Figure 13: Maximally Activating Image for San Francisco

accuracy.
Part of this success can be attributed to our particular for-

mulation of the problem - i.e., many of our design decisions
make this problem easier than it might otherwise be. For ex-
ample, we focus on relatively few, highly-distinctive cities,
allow images taken near one another to be in the training
and test sets, and limit the boundaries of cities to a relatively
small region. These decisions make the problem easier than
it might otherwise be, but, nevertheless, it still remains quite
challenging, and the success of our model in this task pro-
vides yet another demonstration of the impressive capabili-
ties of CNNs.

We additionally attempted to analyze what the model
learned in order to produce such accurate results. In plot-
ting the learned representations in lower-dimensional space,
we found that the learned features effectively differentiate
images into separate regions, often even within cities. Im-
ages in these regions exhibited highly similar traits, often
containing nearly identical buildings, trees, or other objects.
We also visualized the learned features using occlusion, in-
clusion, and maximally activating image techniques. While
the latter did not produce any discernible patterns, the for-
mer two demonstrated the significance of particular objects
in making correct predictions

These visualizations and our cross-validation on the
Flickr dataset help confirm the ability of the model to learn
to differentiate cities based upon reasonable evidence, and
not just upon artifacts of the manner in which images were
collected or other unreliable correlations.

References
[1] S. Belongie and J. Hays. “Learning Deep Represen-

tations for Ground-to-Aerial Geolocalization”. In:
CVPR (2015).

[2] Google Street View Image API. Feb. 2016. URL:
https://developers.google.com/maps/
documentation/streetview/.

[3] J. Hays and A. Efros. “IM2GPS: estimating geo-
graphic information from a single image”. In: CVPR
(2008).

[4] Peddada Hong. “Geo-Location Estimation with Con-
volutional Neural Networks”. In: (2015).

[5] Yangqing Jia et al. “Caffe: Convolutional Architec-
ture for Fast Feature Embedding”. In: arXiv preprint
arXiv:1408.5093 (2014).

[6] Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. “Deep Inside Convolutional Networks: Vi-
sualising Image Classification Models and Saliency
Maps”. In: CoRR abs/1312.6034 (2013). URL:
http://arxiv.org/abs/1312.6034.

[7] Christian Szegedy et al. “Going deeper with con-
volutions”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015,
pp. 1–9.

[8] Tobias Weyand, Ilya Kostrikov, and James Philbin.
“PlaNet - Photo Geolocation with Convolutional
Neural Networks”. In: CoRR abs/1602.05314 (2016).
URL: http : / / arxiv . org / abs / 1602 .
05314.

[9] A.R. Zamir and M. Shah. “Image Geo-localization
Based on Multiple Nearest Neighbor Feature Match-
ing using Generalized Graphs”. In: Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on
PP.99 (2014), pp. 1–1. ISSN: 0162-8828. DOI: 10.
1109/TPAMI.2014.2299799.

[10] Matthew D. Zeiler and Rob Fergus. “Visualizing and
Understanding Convolutional Networks”. In: CoRR
abs/1311.2901 (2013). URL: http : / / arxiv .
org/abs/1311.2901.

[11] Bolei Zhou et al. “Learning deep features for scene
recognition using places database”. In: Advances
in neural information processing systems. 2014,
pp. 487–495.

7

https://developers.google.com/maps/documentation/streetview/
https://developers.google.com/maps/documentation/streetview/
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1602.05314
http://arxiv.org/abs/1602.05314
http://dx.doi.org/10.1109/TPAMI.2014.2299799
http://dx.doi.org/10.1109/TPAMI.2014.2299799
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

