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Abstract

Generating long sequences of text is a challenging problem in natural language
processing. Although current models using deep recurrent neural networks
(RNNs) have attained high performance on the generation of short text sequences,
these models break down when generating longer text. In this work we examine
the use of Generative Adversarial Networks (GANs), as a learned metric of the
quality of produced text with which to train a generative model. We demonstrate
the effective training of this model with policy gradient methods, which circum-
vent the non-differentiable sampling procedure required for use with a sequence
level metric. We then compare the performance of the GAN with that of a state of
the art deep learning model on the task of creating a simple conversational agent.

1 Introduction

The generation of sequences of text is a challenging problem in the field of natural language pro-
cessing. Text generation has a wide range of potential applications, ranging from automated sum-
marization [8] to conversational agents [11]. These technologies could help provide news stories
and customer service both more quickly and cheaply then traditional methods.

Although people value different qualities of generated text between applications, it is generally the
case that the realism of the generated text, i.e., how closely it resembles text produced by a person,
plays a central role. Many metrics used in NLP reflect this fact. For example, the research that
originally introduced BLEU cites the correlation between the metric and human evaluators as the
primary argument for its adoption [9], and the cross-entropy training loss explicitly maximizes the
probability of observed data. These metrics capture different characteristics of text, so what impact
does maximizing one over the other have?

Ranzato et al. recently introduced a method, which they call sequence level training, for training
models to directly maximize a test-time evaluation metric such as BLEU or ROUGE [7]. The re-
searchers demonstrated sequence level training significantly improves performance on the chosen
metric, and claim that the method yields better generated text. The researchers assert that, because
sequence level training evaluates text as a collective set of words rather than discrete choices, it is
better able to guide the training of the model. This hypothesis raises the question that if certain
evaluation metrics enable a model to produce more realistic text, then what is the best evaluation
metric to use?

In this research, we hypothesize that training a model to maximize a sequence level evaluation metric
learned directly from the training data can improve the quality of text generated by that model. We
test this hypothesis by adapting generative adversarial networks (GANs) [6] for use with discrete-
valued outputs using policy gradient methods [13], so that the discriminative component of the
model may be employed as a learned evaluation metric. By applying this model to a toy dataset, we
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demonstrate both the basic viability of the proposed model, as well as explore certain aspects of its
training and use.

In order to more realistically evaluate the performance of GANs, we construct a state-of-the-art
attention-aided recurrent neural network model, and train both the RNN and GAN to perform a
conversational modeling task. RNN models have shown significant success on the task of conversa-
tional modeling, but they often fail to express consistent content or style [11]. Our findings indicate
that GANs trained with simple variations of policy gradient methods do not outperform the RNN
model, but that the discriminator of the GAN shows promise as a sequence level training metric.

2 Background and Related Work

2.1 Text Generation with Language Models

The most basic form of text generation is the language model, wherein one models the probability
of each word in a vocabulary given a context of other words. The most successful current language
models rely on the Recurrent Neural Network [3], a powerful model that can process arbitrarily
long inputs by maintaining a hidden state that incorporates information over time. These models
have been deployed on a wide variety of different types of text, and have proven very capable at
modeling language. The basic RNN is not ideal for generating long sequences of meaningful text,
as it produces text word by word relying on its relatively limited hidden state to maintain consistency
between generated outputs.

2.2 Sequence to Sequence Models

In order to improve the performance of the language model when there is a clear input-output struc-
ture of the text, researchers developed the sequence to sequence model [10]. This model inputs and
processes a sequence of words using an ”encoder” RNN, and then uses a ”decoder” RNN to trans-
late the hidden state into an output sequence. These models have been widely deployed for machine
translation [2], where they have achieved state-of-the art performance. For many applications of text
generation these models are more applicable than a standard language model, as the generated text
often has a purpose that can be formulated as an input text sequence.

A useful tool for sequence to sequence models is the application of an attention decoder, also intro-
duced by [2]. This mechanism learns to selectively sample the hidden states of the encoder in order
to extract important information from the input text when producing the output text. This method
has been shown to have a positive effect on model accuracy when expanding to longer input-output
sequences.

2.3 Generative Adversarial Networks

A GAN consists of a generative model G and discriminative model D, which can be viewed as
playing a minimax game in which G tries to generate samples that D is unable to differentiate from
real ones [6]. The solution to the game has G recovering the generating distribution and D randomly
guessing between samples.

D is trained with a binary cross entropy loss and G is trained to maximize log(D(G(z))), where z is
noise randomly sampled from a prior. For learning with discrete-output samples, a recurrent GAN
can be trained using policy gradient algorithms, which directly parameterize a policy and update it
in accordance with the gradient of the cost with respect to those parameters[13] [7]. By conditioning
on certain information, for example previous statements in a conversation, the GAN can be used to
generate output relevant to that context.

2.4 Sequence-Level Training with Reinforcement Learning

It is not possible to train a GAN producing discrete-valued output with backpropagation. This is
because one must sample at each timestep from the model in order to generate a word, and this is
not a differentiable procedure. To overcome this issue, one can use policy gradient methods such as
REINFORCE. Ranzato et al. use this approach with a new training method called sequence level
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training, which uses REINFORCE to allow for end-to-end training of generative models [7]. In this
method, the loss is taken to be the negative expected reward (e.g., the BLEU or ROUGE score for
an output):

Lθ = −
∑

wg
1 ,...,w

g
T

p(wg1 , ..., w
g
T )r(wg1 , ..., w

g
T )

The derivative of this loss at a single timestep with respect to the output of the network ot is then the
following:

∂Lθ/∂ot = (r(wg1 , ..., w
g
T )− r̄t+1) ∗ (p̂t − 1{wgt+1})

Where r̄t+1 is a baseline subtracted from the actual reward to reduce the variance of the update, p̂t
is the softmax over output scores of the model, and 1{wgt+1} is an indicator vector with a one in the
position of the word produced by the generator. As Ranzato et al. point out, this update has a nice
interpretation in comparison with the derivative of the cross entropy loss: in the cross entropy loss
we subtract 1 from the probabilities in the position of the target word. In the policy gradient case,
we no longer have a target word, so we instead use the generated word as a proxy, and scale or invert
the update proportionally to the reward (i.e., whether or not we want more of that action in the given
context).

The primary disadvantage of this approach is that the action space of the agent is taken to be the
vocabulary dimension, which grows very large for realistic datasets. To overcome this challenge,
Ranzato et al. introduced MIXER, which performs hybrid training using both cross entropy and
policy gradients, so as to direct the actions of the agent even within such a high dimensional space.

3 Approach

3.1 Recurrent Generative Adversarial Networks

We adapt sequence level training to GANs by replacing the reward metric (e.g., BLEU or ROUGE)
with a discriminator network. In our recurrent GAN formulation, we pass in a single random sample
z, which is converted to the initial hidden state of the network, and then forward propagate, sampling
a word at each timestep. The sequence of output words is then provided to a discriminator network,
which can either be used to produce a single score for the entire sequence or a score for each timestep
of the sequence. We experimented with both variations and found the latter to speed learning. See
figure 1 for a depiction of the network.

We implemented the baseline using a linear regression model in which the input was the generator
hidden state and the output was the predicted reward from the discriminator. So long as this regres-
sion model minimizes squared error, it does not bias the gradient. We additionally approximated the
MIXER hybrid training method by alternating between training the generator with an epoch of cross
entropy and policy gradient methods. The benefits of these different components are considered in
the results section.

3.2 Attention-Aided GRU Recurrent Neural Network

Our baseline state-of-the-art model for sequence to sequence modeling is a three layer, GRU-based,
attention decoding RNN. This model recreates the sequence to sequence machine translation model
implemented in [2]. As we are experimenting with same language input-output pairs, we modified
the model to use a single shared vocabulary for the encoder and decoder. The decoder uses an
attention mechanism, which creates a context vector by learning to sample the encoder hidden states
such that it will extract the information from the encoder most important for generation of the current
word. Word embeddings were randomly initialized in our model, as our experiments were on a large
dataset so pretraining word embeddings was not necessary. We also added temperature sampling for
text generation, wherein words are generated by a probabilistic sampling of the output distribution
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Sample Sample

Figure 1: The recurrent generative adversarial network model. The derivative of the reward rather
than the loss is shown for the gradient ascent case.

Figure 2: Three Layer GRU RNN Encoder/Decoder with Attention

produced by the decoder. This allows generated text to take on more variety and style than simply
choosing the most likely word at each state.

We elected to use the Gated Recurrent Unit [4], as it has been shown to have far better performance
on long sequences than the vanilla RNN. This model uses ”gates” to select the relative importance
of each value of the previous hidden state versus the input at each timestep. The GRU expands on
the hidden state update of the vanilla RNN as follows:

z(t) = σ(Wzx
(t) + Uzh

(t−1))

r(t) = σ(Wrx
(t) + Urh

(t−1))

h̃(t) = tanh(Wx(t) + r(t) ◦ Uh(t−1))

h(t) = z(t) ◦ h(t−1) + (1− z(t)) ◦ h̃(t)

The decoder output is evaluated with a cross entropy loss, which compares the projected probability
of the correct word in each location with the actual correct word. This loss is then back-propagated
through the network to train both the weights of the model and the word embeddings.

4 Experiments and Results

We performed two sets of experiments. In the first set, we considered a toy example in order to
demonstrate the viability of training recurrent GANs with policy gradient methods as well as to
explore certain properties of the model and its training. In the second set of experiments, we eval-
uate the performance of the recurrent GAN and the attention-aided GRU network on a larger-scale
conversational modeling dataset.

4.1 Toy Dataset Example

In order to ensure that the GAN trained with REINFORCE worked correctly, as well as to explore
some of the design options and characteristics of the model, we created a toy dataset consisting of the
letters of the alphabet in order. In experiments on this dataset, the model was trained to generate two
characters, and evaluation of the model was performed by computing the ratio of generated samples
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in the dataset to those not in the dataset. For example, if the model randomly generates [a, b] that
would be in the dataset, whereas if it generates [b, a] that would not be. While this experiment neither
reflects the ability of the model to generalize to unseen data nor to learn more complex distributions,
it does make understanding and analyzing the model easier.

4.1.1 Training Method Comparison

Figure 3 shows the loss over time when training the model with different methods. In all cases, the
model is trained for 1000 epochs, without dropout, a per-timestep sampling temperature of 1.0 that
is annealed to 0.01, 128 hidden units, an embedding dimension of 32, and LSTM hidden units. We
explored three training variants. The first is simple REINFORCE as described in the background
section. The second incorporates a baseline [12] in order to reduce the variance of the parameter
updates, which is computed by training a linear classifier to predict the reward of the discriminator
given the hidden state of the generator [7]. The baseline is generally subtracted from the reward term
in the REINFORCE gradient expression. In order to accomplish this in our model implemented in
TensorFlow [1], we subtracted the baseline from the reward computed in the loss, which is reflected
in the fact that the loss of the generator can be negative. Figure 4 shows the loss over time of the
baseline regression model. The third variation we considered was an approximation of the MIXER
algorithm [7], where we alternate training the generator with cross entropy (as a traditional RNN
sequence model) and policy gradient methods. Table 1 shows the evaluation results for the different
training procedures.

Figure 3: Training loss for generative and discriminative models using policy gradients (left), policy
gradients with a baseline (center), and hybrid policy gradient and cross entropy (right).

Figure 4: Training loss of the baseline reward predictor over time.

4.1.2 Results

Model In-Sample Percentage
Policy Gradient 96.1%

Policy Gradient with Baseline 86.5%
Policy Gradient with Cross Entropy 93.2%

Table 1: In-sample results for toy dataset
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The loss graphs for GANs can be difficult to interpret because of the competing nature of the model
subcomponents. For example, it is frequently the case that model performance can improve drasti-
cally with only small changes to the loss values because the losses express the relative, not absolute,
performance of the generator and discriminator. This relationship can be controlled somewhat using
a hyperparameter k, which is the number of training epoch runs for the discriminator for each epoch
of the generator. In this toy experiment, we trained both for only one epoch, which contributed to the
discriminator having greater loss. Furthermore, because our implementation of the GAN alternates
between training the subcomponents for complete epochs, the training losses are not complementary.
Nevertheless, they do provide some insight. The GAN trained with only REINFORCE shows that
the relative loss of both models stays approximately the same over time. Anecdotally, this seems to
be a strong indicator of successful training, as is reflected in the model’s high in-sample percentage.

The models trained using a baseline and with alternating cross entropy perform worse than the basic
model. This may be due to the fact that the hyperparameters (e.g., learning rate, k, hidden units,
embedding dimension, z dimension) were tuned for the basic model. In the cross entropy case, the
generator tends to learn quickly that a certain pair of characters is common, and then produces those
characters with high frequency. This trend results in the discriminator easily recognizing the outputs
of the generator as fake, which is reflected in the large and increasing loss of the generator over time.
This same result occurs in the larger action space of the Twitch.tv dataset as well.

4.2 Twitch.tv Experiments

4.2.1 Dataset

In order to test the relative capabilities of the RNN and GAN models on a large scale sequence
generation task, we trained the models to emulate chatting agents on the popular live-streaming
website Twitch.tv. This website hosts ”channels” on which a person live-streams themselves playing
video games. Anyone watching this channel has the opportunity to participate in an IRC chatroom
associated with the channel. Large channels produce millions of lines of chat each year, creating a
sufficient dataset to train a sequence to sequence conversational agent.

Our problem is formulated as a sequence to sequence text generation problem where the model is
given the previous three messages sent in chat as context and is asked to generate the subsequent
chat message. This is a similar setup to the conversational models developed in [11].

Most conversational models are trained on the logs of chatrooms with two people, and as such they
model the interaction of two people in a coherent, flowing conversation. Twitch chats often have
upwards of 10,000 participants, so the interactions tend to be less conversational and more ”group
think”. In the larger rooms, attempting to type meaningful sentences is often useless, as the chat
message is not on screen for long enough for it to be read. As such, most messages are short jokes,
or emoticons. Smaller channels often have more conversational chats, as chat agents are more likely
to recognize each other and read messages.

4.2.2 Training

We trained two separate RNN models on the logs of two Twitch channels, one small channel with
roughly 4,000 participants, and one large channel with upwards of 20,000 participants. Training
was done with the AdaGrad optimizer [5], and learning rate was decayed when the training loss
plateaued. Each model was shown roughly 3.5 million training examples from the Twitch chat
dataset.

The GAN was trained on the logs of only the small channel, using the identical hyperparameters as
those described above in the training of the toy dataset, though with larger networks.

4.2.3 Results

The state of the art model clearly outperforms the GAN in this sequence generation task. The state
of the art model achieved very low test loss, which is expected on this relatively simple task with a
very large dataset.

The GAN failed to reach this level of performance on the test dataset. Since the GAN uses rein-
forcement learning in training, it takes an action at each generation step (i.e., samples a word) and
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Model Test Perplexity
GAN with Policy Gradient on Small Channel 8560

GAN with Policy Gradient and Baseline on Small Channel 1.60× 1018

GAN with Policy Gradient and Cross Entropy on Small Channel ∞
RNN on Small Channel 24.8
RNN on Large Channel 17.8

Table 2: Perplexity Results on Twitch Dataset

the size of this action-space is the size of the vocabulary. This leads to both slow and sparse learning
when using REINFORCE both with and without a baseline.

The performance of the different GAN models provides insight into the training variants and their
impact on the models. The simple GAN with policy gradient achieves slightly above random per-
formance (as the vocabulary size in testing was 10,000). The GAN with baseline begins to make
actual predictions, for instance predicting a single, frequently seen word for all words. This leads
to much higher perplexity, as it then assigns near zero probabilities to all other words. The GAN
trained with hybrid cross entropy loss does this to an even greater extent, assigning zero probability
to most words and very high probability to a few much more common words, which leads to infinite
perplexity on the test set.

4.2.4 Analysis

The two RNN twitch chat agents behave very differently. The bot trained on the large channel either
says short joking fragments or parrots input, similar to the ”group think” described above. The bot
trained on the small channel will also parrot some input, like emoticons, but will also put together
longer sentences when prompted with text. These sentences are often not relevant to the input
prompt, as chat is mostly directed at the streamer instead of other chatters in the channel. Examples
of the outputs of each channel are shown below in figures 5 and 6.

Figure 5: Example Output of Twitch Chat Large Channel RNN

Figure 6: Example Output of Twitch Chat Small Channel RNN

Validation loss for both channels is shown in figure 7. It was easier for the RNN to learn the
behaviour of the large channel, which is expected since the large channel tends to consist of shorter,
less coherent messages. The larger channel both sees and has to predict longer sentences that are
more reliant on previous chat messages, making it a significantly harder task.

4.2.5 t-SNE Visualization of Word Embeddings

We have visualized the word embeddings learned by the RNN model using t-SNE. This technique
reduces the 128-dimensional embeddings into two representative dimensions, so they can be more
easily visualized. Words close together in this space are seen frequently in similar contexts or have
similar meanings. The t-SNE visualization is shown in figure 8.

There is a lot of interesting structure in this visualization of the 100 most common words used by
the large model. Notably, the emoticons are divided into two distinct groups. The bottom group is
the set of ”funny” or ”happy” emoticons. The leftmost cluster is a group of ”sad” emoticons. The
rightmost cluster is a set of unicode characters frequently used to make text-drawings in chat.
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Figure 7: Validation Perplexity while Training RNN Model

Figure 8: t-SNE Visualization of Word Embeddings Learned by RNN Model

5 Conclusions and Future Work

The Recurrent Generative Adversarial Network fails to scale to large action-spaces, even when aided
by simple hybrid learning techniques. Applying reinforcement learning in vocabulary-sized action
spaces poses a significant challenge when initializing with a random policy because learning pro-
ceeds too slowly, or, depending on sampling temperature, can fixate on a small set of words resulting
in insufficient exploration. These challenges lead to significantly lower accuracy on large sequence
generation task than the state of the art multi-layer RNN models.

Future work could explore training a GAN with MIXER [7], which would likely address training
issues more effective than the naive hybrid method we used. Other training methods that allow the
model to learn rewarding states more quickly could also significantly improve the model.

With a more successful model, future work could be done to compare the trained discriminator
network to current text evaluation metrics like BLEU or ROUGE. In theory the discriminator should
be similarly capable of grading generated text, and comparing its properties to those of designed
metrics could lend insight into GAN performance as well as allow for further improving generative
models.
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